M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALI FORNI A

THESI S

CONVERGENCE OF THE NAVAL | NFORVATI ON
| NFRASTRUCTURE

by
James A. Knol |
June 2004

Thesi s Advi sor: W1 Iliam Ray
Second Reader: Davi d Fl oodeen

Approved for public release; distribution is unlimted.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

REPORT DOCUMENTATI ON PAGE Form Approved OVB No. 0704-

0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for review ng instruction, searching existing data sources, gathering
and maintaining the data needed, and conpleting and reviewing the collection of information. Send
comments regarding this burden estinmate or any other aspect of this collection of information,
i ncludi ng suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Hi ghway, Suite 1204, Arlington, VA
22202- 4302, and to the Ofice of Mnagenent and Budget, Paperwork Reduction Project (0704-0188)
Washi ngt on DC 20503.

1. AGENCY USE ONLY (Leave bl ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2004 Master’s Thesis
4. TITLE AND SUBTI TLE: 5. FUNDI NG NUVBERS

Conver gence of the Naval Information Infrastructure
6. AUTHOR(S) Janmes A. Knoll

7. PERFORM NG ORGANI ZATI ON NAME(S) AND ADDRESS(ES) 8. PERFORM NG ORGANI ZATI ON
Naval Postgraduate School REPORT NUMBER
Mont erey, CA 93943-5000

9. SPONSORI NG / MONI TORI NG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORI NG MONI TORI NG
N A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U S. CGovernnent.

12a. DI STRIBUTI ON / AVAI LABI LI TY STATEMENT 12b. DI STRI BUTI ON CODE
Approved for public release; distributionis unlimted.

13. ABSTRACT (nmaxi mum 200 wor ds)

Converging voice and data networks has the potential to save noney and is the
mai n reason Voice over Internet Protocol (VolP) is quickly becom ng nainstream
in corporate Anerica. The potential VolP offers to nore efficiently utilize
the limted connectivity available to ships at sea mmkes it an attractive
option for the Navy. This thesis investigates the useful ness of VolP for the
comuni cations needs of a unit |evel ship. This investigation begins with a
review of what VolP is and then exam nes the ship to shore connectivity for a
typical unit l|evel ship. An OWNeT++ nopdel was devel oped and used to exan ne
the issues that affect inplementing VolP over this type of Ilink and the
results are presented.

14. SUBJECT TERVB 15. NUMBER OF
Voi ce over IP (Vol P), ADNS, OWNET++, Conver gence, Satellite | PAGES
Conmuni cat i ons, Networks, Sinulation 279
16. PRI CE CODE
17. SECURI TY 18. SECURI TY 19. SECURI TY 20. LI M TATION
CLASSI FI CATI ON COF CLASSI FI CATION OF TH' S CLASSI FI CATI ON OF OF ABSTRACT
REPORT PAGE ABSTRACT
Uncl assi fi ed Uncl assi fi ed Uncl assi fi ed UL
NSN 7540- 01- 280- 5500 St andard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Approved for public release; distribution is unlimted

CONVERGENCE OF THE NAVAL | NFORMATI ON | NFRASTRUCTURE
Janes A. Knol |

Li eut enant Conmander, United States Navy
B.S., United States Naval Acadeny, 1993

Submtted in partial fulfillment of the
requi rements for the degree of

MASTER OF SCI ENCE | N SOFTWARE ENG NEERI NG

fromthe

NAVAL POSTGRADUATE SCHOOL
June 2004

Aut hor : James A. Knol

Approved by: WIIliam Ray
Thesi s Advi sor

Davi d Fl oodeen
Second Reader

Pet er Denni ng
Chai rman, Departnent of Conputer
Sci ence

TH'S PAGE | NTENTI ONALLY LEFT BLANK

ABSTRACT

Convergi ng voice and data networks has the potential
to save noney and is the main reason Voice over |Internet
Protocol (VolP) is quickly becom ng nmainstreamin corporate
Areri ca. The potential VolP offers to nore efficiently
utilize the limted connectivity available to ships at sea
makes it an attractive option for the Navy. This thesis
i nvestigates the useful ness of VolP for the comunications
needs of a unit level ship. This investigation begins with
a review of what VolP is and then exanmines the ship to
shore connectivity for a typical wunit |level ship. An
OWNeT++ nodel was devel oped and used to exami ne the issues
that affect inplementing VolP over this type of l|ink and
the results are presented.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Vi

VI .

VII.

TABLE OF CONTENTS

INTRODUCTT ON . . . e e e e e e 1
A WHAT IS CONVERGENCE e i 1
B. THE CASE FOR VO P ... e e 1
C. VO P CONSIDERATIONSo 2
D. US NAVY VO P .. e e e 3
BACKGROUNDottt e e e 5
A BRIEF H STORY OF THE PSTN. 5
B. BUSI NESS TELEPHONY i 7
HOW VO CE OVER | NTERNET PROTOCOL (VO P) WORKS.......... 11
A PLACING A CALL e e e e e 11
B. NETWORK DATA TRANSPORT e e 12
C VOP AT THE NODE LEVEL i 13
1. | nt ernet Engi neering Taskforce (I1ETF) 14
2. | nt ernati onal Tel ecomruni cations Union (ITU) .15
CHALLENGES OF VO P ... e 19
A VO CE QUALL TY . o e e e s e e 19
B. DEL AY . . 20
C. JIETTER . . 22
D. LOST PACKETS e e e e e e e e 22
THE NAVY VO P | MPLEMENTATION. . ..o 25
A THE AUTOVATED DI G TAL NETWORK SYSTEM. 25
B. TECHNI CAL CONSI DERATI ONS TO THE Va P
| MPLEMENTATI ON . ..o e 26
1. Del ay ... 26
2. Jitter o 27
3. Packet LOSS 27
C. TWO POSSI BLE | MPLEMENTATIONS o . 28
1. Direct VolP Inplenentation................... 28
2. An Alternative VolP Inplenentation........... 29
MODEL DEVELOPMENT e e e e e e e 31
A TOOL SELECTION. ..o e 31
B. MODEL DEVELOPMENT e e e e 32
C. | NTERVEADI ATE MODELS e 36
1. Frame Size..... 36
2. | npact of TCP Congestion Control 38
RESULTS AND CONCLUSI ONS e e e e e 45
A DI RECT | MPLEMENTATION OF VOP...... 45
B. ALTERNATI VE VO P | MPLEMENTATION. 47
C CONCLUSI ONS . . .o e e e 48

D. FUTURE WORK e 49

APPENDI X A. GLOSSARY . 51
APPENDI X B. SIMULATION CODE e 59
A CHANGES TOIPSU TE SQURCE. 59
B. COMPONENT S . . . e 69
C NETWORKS . . . o 188
Bl BLI OGRAPHY . . . 265
INITIAL DISTRIBUTION LIST e 267

Viii

Fi gure

Fi gure
Fi gure

Fi gure
Fi gure

Fi gure
Fi gure
Fi gure

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

Fi gure
Fi gure
Fi gure

10:
11:
12:
13:
14
15:

16:
17:
18:

LI ST OF FI GURES

Physical Cable Between all Tel ephone Users

(From Davi dson & Peters, 2000) 5
The Vol P Call Process (From Caputo, 2000) 12
Protocols related to Voice over |P (From

Mller, 2002) i 15
H. 323 Protocol Stack (After Black, 2000) 16
Comparison of Conpression Techniques (After

Caputo, 2000) i e 20
Sinmplified Block Diagram of ADNS (After

Buddenburg, 2003) 26
Current ADNS Ship Configuration (From Casey,

2004) .. 28
Black ADNS Ship Configuration (From Casey,

2004) . 29
Vol P network with INES 36
Ef fect of frane size on CODEC performance 37
TCP Cient Network, 39
Data Rate for network with 18 Cients 40
Data Rate for Network with 3 Cients 41
Data Rate for Network with 1 Cient 42
Net work for Determning VolP Transition

Efficiency 43
Ef fects of call cycle on VolP |Inplenentation .45
Upgraded 128K INMARSAT i 47
Black Voice Routing 48

TH'S PAGE | NTENTI ONALLY LEFT BLANK

. 1 NTRODUCTI ON

A VWHAT | S CONVERGENCE

Convergence is the integration of voice, data, video,
or any other inmaginable nultinedia conmunication onto a
single transm ssion nedia. This nmay seem like a |lofty and
futuristic goal, but the ideas of convergence are not new.
Convergence has been talked about since the 1980's when
Integrated Services Digital Network (1SDN) was first
i ntroduced for sharing a transm ssion |line between data and
vVoi ce. Additionally, in the 1990's, the phone conpanies
underwent a major upgrade to their backbone systens. They
transitioned to packetized voice on their trunks in order
to nore efficiently wutilize available bandw dth. The
potential that VolP offers to nore efficiently utilize the
[imted connectivity available to ships at sea nakes it an
attractive option for the Navy. In recent years, a renewed
enphasi s on convergence has been seen in the form of Voice
over Internet Protocol (Vol P) . VolP refers to the
transm ssion of packetized voice traffic on a network
traditionally designed for data. VolP provides Phone-t o-
Phone, PC-to-PC, PC-to-Phone, Phone-to-PC and fax-to-fax
services. VolP is often used synonynously with the terns
I nternet tel ephony, |IP tel ephony and packeti zed voi ce.
B. THE CASE FOR VA P

The nunmber one driving factor behind nost new
technol ogy is cost savings. The efficiency of VolP nakes
it very cost effective for use in industry. Significant
savings are realized when toll calls are transported via an

internet or the Internetl. Many organi zations, DoD

1 The terminternet (with a lower case i) in general refers to the
connection of any two or nore separate networKks. The term Internet
1

i ncl uded, save noney by |easing connections used to provide
dedi cated conmunications. These |eased connections are
broken into 64kbit/s |SDN channels. Each channel is
dedi cated as either voice or data. G ven that a nornal

conversation contains approxi nately 50% sil ence, 50% of the

bandwi dth dedicated to a voice channel is wasted. Data
transmssion is also ‘bursty’ in nature. Consi der abl e
bandwidth is wasted between data transm ssions. By

conbining the two kinds of traffic, the burst nature of

both can be exploited. Both types of traffic can then
travel over one line. This can be translated into cost
savings by wusing one dedicated line for both types of
traffic vice having one |line for voice and another for
dat a.

Furt her savings conme from the reduction of maintenance
costs associated with the infrastructure of two disparate
net wor ks. In a traditional installation using Plain AOd
Tel ephone Service (POTS), separate organizations are
required to nmaintain the data network and the Private
Branch Exchange (PBX). Converging the voice and data
net wor ks woul d idealistically elimnate t he entire
infrastructure associated with the I|egacy phone system
because all phone calls would travel over the data network.
In reality, specialty VolP equipnent will be required but
still the overall size of the resulting organization wll
be significantly reduced.

C. VO P CONSI DERATI ONS

In sinple terns, convergence is good because it saves
noney; however, cost savings alone is not always enough to
convince industry to fully enbrace a new technol ogy. Many

(with a capital 1) refers to the specific entity that is publicly
accessi bl e and conprised of networks worl dwi de.

2

times the quality of the services provided are as inportant
as cost savings. For VolP to be widely accepted and used,
the quality of VolP service provided nust be at |east as
good at those currently provided by the Public Swtched
Tel ephone Network (PSTN). Jitter and delay are often sited
as potential problens in the quality of VolP and need to be
addr essed. Al so, wusers have grown accustoned to many
advanced features provided by the PSTN These include
conveni ence features such as Call Witing, Caller ID and
Call Transfer, safety features such as Enhanced 911, and
Mlitary Unique Features such as Miulti-level Precedence and
Preenption (MPP). Al'l of these nust be incorporated as
Vol P evolves. Finally, VolP nust be conpatible wth
exi sting data-over-voice applications such as Mdens, Fax,
and STU STE.
D. US NAVY VA P

For the US Navy, convergence is not an easy task to
undertake. In contrast to nost other organizations, a good
portion of the Navy is unable to communicate with the rest
of the world via terrestrial cables. The wuni que issues
associated with shipboard communications while at sea nust
be considered when designing any system for use by the
fleet. Currently, comunication for the mpjority of the
fleet is via |ow bandw dth connections used for both voice
and data. The | NMARSAT system was introduced with the
intent of neeting energing comuni cations needs of the unit
| evel ships in the fleet. The problemis that applications
designed for shore based use, where bandwidth is |less of an
i ssue, have been incorporated for use at sea. The current
bandw dt h needs of the unit |evel ships exceed the capacity
of the INVMARSAT system in its current configuration. Thi s

thesis created and developed nodels used to investigate

Vol P in a Navy environment.

| mpl ementing VolP on a satellite comuni cations system
is not an easy task. Problens that affect a high-speed
terrestrial network are conpounded when a satellite is in
the comruni cations path. The delay alone, approximtely
500ns for a single trip to and froma satellite, is outside
of the conventional norm for voice comunications.
Therefore, the effects of |low bandwi dth, high |atency
conmuni cations mnust be considered in the evaluation of
Vol P. This investigation begins with a review of what VolP
is and then exam nes the ship to shore connectivity for a
typical unit |evel Navy shinp. A nodel is then used to
exam ne several issues associated with inplenenting VolP
over this type of link and the results are presented.

1. BACKGROUND

VolP nerges the technologies and features of the
Public Switched Tel ephone Network (PSTN) and business

tel ephony systens w th conputer networKking. To truly
understand how VolP evolved, it is inportant to first
revi ew each of these systens. This chapter will begin with

a brief history of the PSTN and then covers current types

of business tel ephony systens. The networking aspects of
Vol P and the terns used to describe them will be discussed
in Chapter 111.

A BRI EF H STORY OF THE PSTN

In 1876, Al exander G aham Bell nade the first voice
transm ssion over an electrical W re. This first
transm ssion was between two |ocations connected via a
single wire. In the early days of the tel ephone, each user
had to be directly connected to every other user. Figure 1
shows the direct connection of eight tel ephones.

Figure 1: Physical Cable Between all Tel ephone Users
(From Davi dson & Peters, 2000)

The nunber of connections required can be determ ned

by the followi ng equati on:

of connections = n(n-1)/2

where n is the nunber of users in the system

For this system with eight users, 28 connections are
required. As n increases, this system can quickly becone

unwi el dy and quite costly.

The solution to this problem was to create a swtch.
Al'l of the physical lines were run to a central |ocation
and an operator routed the calls by using a patch cord to
physically connect users to each other. Since the swtches
could be connected to other swtches, telephone networks
could be scaled up to cover a greater geographic area. In
the 1890's, an advance in swtching technology enabled
switch-to-switch calling wthout an operator. However
well into the second half of the 20'" century, many calls
were still patched by hand. (Farley, 2004)

Over the years, many advances have been nade to
enhance the tel ephone networks. In 1937, multiplexing of
analog signals was introduced. For the first tine,
multiple calls could be carried on a single transm ssion

l'ine. The inpact was as profound as the invention of the

swi t ch. This allowed fewer cables to be run and reduced
overall system cost. A further enhancenent occurred in
1963 with the introduction of di gi tal transm ssi on

techni ques. These digital techniques are the basis for the

infrastructure in use today.

The current state of the telephone industry is mxed.
Al t hough operator switched calls are a thing of the past,
many anal og switches are still used on the periphery of the
updated digital backbone. Those areas still using anal og
switches do not get any of the benefits associated wth

di gital systens.

This digital technology has enabled the nodern PSTN to
be characterized by advanced digital features such as
Caller 1d, Call Wiiting, Voice Mil, and other services.
Audi bl e del ays, once common for |ong distance calls, have
been greatly reduced or in nost cases elimnated as calls
are now transmtted at the speed of light. These services
have becone commonpl ace and nust be accommobdated by any new
t echnol ogy.

B. BUSI NESS TELEPHONY

Today’s business telephone system is simlar in
structure yet nore plentiful in features than the PSTN
These systens can be classified as one of five types.
These are the sinple business line, the Centrex line, the
Virtual Private Network (VPN), the Private Branch Exchange
(PBX), and the Key-system (Davidson, 2000)

The sinpl est business tel ephone systemis the business
l'ine. Provided by a Local Exchange Carrier (LEC), the
business line is wusually charged at a higher rate but is
essentially the sane as a residential [|ine. It is used by
smal | businesses that do not require a large nunber of

features or a | arge nunber of users.

Al so available from the Local Exchange Carrier (LEC)
is the Centrex line. This type of system would be used by
a small business that needs additional features not

avai l able from a regular business |ine. The phones are
7

grouped into a Cosed User Goup (CUG. This CUG provides
the business with features such as call transfer, cal

wai ting and cal |l groups.

A step up from the Centrex is the third type of
busi ness system the Virtual Private Network (VPN). The
VPN allows the user to treat geographically dispersed sites
as a Cosed User Goup (CUG. This system is best suited
for a medium sized business |like a departnment store where
there are several different geographic |ocations but still
not a |large volunme of calls. It allows separate sites to
be connected wthout the overhead maintenance costs
associated with systens that are nore conpl ex.

The Private Branch Exchange (PBX) is by far the nost
common phone system used in business today. The PBX gives
t he conpany conplete control over the system configuration.
A business that has a higher ratio of internal calls to
ext er nal calls can pur chase f ewer PSTN t runks
(connections). If the internal <calls go to separate
| ocations, tie-lines can be purchased to create permanent
connections thus reducing |ong distance charges.

The fifth system is known as the Key-system It is
simlar to the PBX but generally used by businesses wth
fewer than 50 phones. A Key-system costs |less than a PBX,
in both initial setup and nmintenance, but lacks the
ability to expand the way a PBX system can. This | ack of
expansi on capability means a business nust be fairly stable
and able to predict its future needs when purchasing a Key-

syst em

As previously nentioned, many of the features and
functions of the Public Sw tched Tel ephone Network (PSTN)

8

and the business telephony systens used today have
contributed to the makeup of VolP. Users of these systens
have expectations for quality that need to be present in
Vol P. Vol P, however, is deeply rooted in conputer network
technol ogy as well. The next chapter explains the basics

of how Vol P works in network terns.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

10

I11. HOW VO CE OVER | NTERNET PROTOCOL (VO P) WORKS

Descri bing how VolP works is a difficult task. Ther e
are two (2) major governing bodies that have published
di fferent standards and reconmmrendati ons on how Vol P shoul d
be inplenmented. The Internet Engi neering Task Force (IETF)
has addressed the issue from a network communi cations point
of view where the International Tel econmunications Union
(I'TYU has published nore along the lines of telephone
systens technol ogy. These different approaches do have
several overlapping or commobn conponents but al so have sone
i nconpatible parts as well. Placing a VolP call from a
hi gh-level point of view and data transport from the
net work-1evel point of view are commobn to both sets of
prot ocol s. Node-| evel inplenentation is where the two
differ. This chapter will begin by presenting the high
| evel view of placing a VolP call followed by a description
of data transport at the network |evel. Finally, a
description of the two differing node Ievel inplenentations
IS presented.

A PLACI NG A CALL

When placing a call using VolP, the dial tone, touch-
tone, ringing, and busy signals are all enulated by a
termnal or gatekeeper. Wen a nunber is dialed, it is
mapped to the IP address of the phone to be called. A cal
setup protocol is then used. The actual set up will depend
on which of the two governing bodies’ protocols are used
The setup protocol |ocates the phone to be called and once
found, sends a signal to produce a ring. When the
receiving handset is picked up, voice is digitized via an

anal og-to-digital converter (ADC), packetized, encapsul ated

11

into IP datagrans, and sent across the network. At the
receiving end, the |IP encapsulation is stripped, the data
stream i s reassenbled, and the digital signal is converted
to voice via a digital-to-analog converter (DAC). Figure 2

shows this call process.

/r Voice Digitization \

Analog Electrical Binary Bit Stream Packet Stream IF Datagrams
Signal
Y
1011100011010101 [ore J[oon J[foo [107] LE L ooii §oiioe |]
o Rl G 0 L
Sound ‘|' P /
Waves Analag to E
= ncapsulation
Digital Fackstizer p'zu
Converter Transmission
-~
IP Data Network
Analog to : 'Pm
Digital Fackatizer ncar_‘iu an
Saound Gonyerter Transmission
Waves l’
i [= [oot T 107 T
M 101110001181 0101 ISR | IR | IS | SR I ITEE T N
W
- . |F Datagrams
Analog Electrical Binary Bit Stream Facket Stream 9

. /

Figure 2. The Vol P Call Process (From Caputo, 2000)

B. NETWORK DATA TRANSPORT

Once a connection is established in the call process,
data is then transported across the network. As nentioned
above, the nethod of data transport is the sanme regardl ess
of which governing bodies protocols or standards are being

12

used. Data transport actually begins with packetizing data
in accordance with a CODEC. A CODEC or coder/decoder is a
standard nethod for encoding and conpressing data. Several
different CODECs are currently used for voice transm ssion.
These CODECs are defined in standards published by the

| nt ernati onal Tel ecomruni cations Union (ITU).

The data is then encapsulated in a Real-tinme Transport
Protocol (RTP) (RFC 1889) datagram RTP is used with other
protocols to provide transport for real-time data such as
voi ce or video. The RTP header contains sequencing, tine
stanping, and content information. This datagram is
usual ly transported via User Datagram Protocol (UDP) (RFC
768) . The UDP datagrans are then encapsulated into
Internet Protocol (IP) (RFC 791) datagranms that are used to
route the information to the desired destination. At the
destination, each layer is stripped until the voice data
stream can be reassenbl ed.

C. VO P AT THE NODE LEVEL

| mpl ementing VolP at the node level is very different
dependi ng on which governing bodies’ protocols are used by
t he equi pnent manuf act ur er. These di fferent
i npl enentations are not conpatible with each other so it is
i mportant to know which is being used. Some manuf acturers
of Vol P equiprment will include the capability to interface
using protocols from either governing body but this is not
al ways the case. This section describes the different sets
of protocols from each governing body. A system based on
the IETF recommendations is presented first followed by a
system descri bed using the | TU standards.

13

1. | nt ernet Engi neering Taskforce (1ETF)

The Internet Engineering Task Force (IETF) is the
governing body responsible for recomending standards for
the Internet. As such the recomendations for VolP tend to
be rooted in networking fundanmentals. The following is an
exanple of a typical <call wusing terms from the |I|ETF
f ramewor k:

A User Agent is the software that interfaces wth and

acts on behalf of the user. The user agent uses the
Session Initiation Protocol (SIP) (RFC 2543 found on Figure
3) to initiate a call. SIP is used to establish, nodify,
or end a VolP session. The User Agent will use SIP to
contact either a proxy server or a redirect server. The
Proxy Server wll act on behalf of the User Agent and

forward an address request to the next node while the
Redirect Server will send the next node information back to
the User Agent for further requests. Once the address is
resolved, the User Agents negotiate the paraneters of the
call in Session Description Protocol (SDP) (RFC 2327 found
on Figure 3) nessages. SDP is used by other protocols as a
standard format to describe the elenments of a session such
as which CODEC will be used. If the call will traverse to
a different type of network, the Media Gateway Controller

negotiates the call and acts to nediate between the source

and destination User Agents during the call. Mlti Gateway
Control Protocol (MXCP) (RFC 2705 found on Figure 3)
establishes the use of Mdia Gateway Controllers. These

controllers govern the operation of various Mdia Gateways.
Medi a Gateways translate between various types of networks
such as the Telco Backbone, a local |oop, an Asynchronous
Transfer Mdde (ATM network, or a PBX

14

RSP | 3| AudioNVideo
RFC 2326 \ Applications
I AN
ENUM | o Y
RFC2016 [\ | .
\ NN Coding sop
\ \ \ G.xxx, H.26x RFC 2327
I\
: ¥ \\‘ \ S l
Y | N N Y
MEGACO/ DNS
H.323 SIP l H.248 RFCs 1034 RTP RTCP || SAP MGCP RSVP
rFC 2543 | | mrc 3015 1035 RFC1889 || RFC1889 || RFC 2074 || mFcz70s || RFC 2205
\
Y Y Y Y Y Y Y Y
TCP UDP
RFC 793 RFC 768

P
RFC 791

Y

Network Interface Layer Protocols

Figure 3. Protocols related to Voice over IP (From
Mller, 2002)

2. I nternational Tel ecomruni cations Union (ITU)

The International Teleconmunications Union (ITU is a
body responsible for establishing global telecomunications
st andar ds. The specifications from the I1TU for VolP
closely follow other telecomunications standards and
specify the working of VolP in terns of signaling. In
contrast to the IETF s collection of protocols that can be
used for VolP, the ITU provides a single specification,

H. 323. H 323 is an overarching standard for *“packet based
15

mul timedia wthout Qs H. 323 incorporates other
protocols such as H.225.0 for termnal to gatekeeper
signaling and H 245 for Term nal control. Figure 4 shows
the relationship between these protocols and the transport

mechani sm

System Control

Audio Video Data User Interface
G711 B FE=es
G.722 H.261 Call RAS H.245
g;gg H.263 T120 | Control Control Control
G:729 H.225 H.225

RTP/RTCP
UBP |, - UDPOrTCP
e o 2 PV e Wt | = -
L_2 Varies
L_1 Varies

Figure 4. H 323 Protocol Stack (After Bl ack, 2000)

A detailed call progression for systens using H 323 is
beyond the scope of this paper. A sunmmari zed description

foll ows:

A user’s equipnment is called a termnal. Before a
call can be placed, the termnal nust register with a
gat ekeeper. If the termnal is a part of a data network,
the term nal performs the encoding, conpression, and
encapsul ati on of the voice sanple. If the termnal is not
part of a network, this function is perforned by the
Gat enay. A Gat ekeeper serves as the overall controller of
the VolP system It controls access to the network,
manages bandw dth, and perforns address resolution. The
source and destination GCatekeeper actually establish a

16

call. If the call wll traverse a non-IP based network,
the Gatekeeper controls the Gateways that perform the
required translations. The Gatekeeper uses the previously
menti oned Media Gateway Control Protocol (M3CP) or its
repl acenent, Media Gateway Control (MEGACO H. 248) for
control of all nodes. MEGACO H. 248 is a joint IETF and I TU
standard based on Media Gateway Control Protocol (MSCP).

This section shows VolP technology 1is actually
governed by two different bodies, the IETF and the [|TU
The nethods and equi pnent used by each are different. The
differences are seen at the node |level but ultimtely, both
acconplish voice transm ssion over an |P based network. No
matter which type of system is used, specific challenges
nmust be overcone if VolP is to be successful.

17

TH'S PAGE | NTENTI ONALLY LEFT BLANK

18

V. CHALLENGES OF VA P

For any replacenment technology to becone wdely
accepted, the services provided nust be conparable wth
those of the current system Mre often, users demand even
nore from a new technol ogy. In the case of VolP, this
presents several technical <challenges. This chapter
addresses the four main technical VolP issues that should
be considered when a network is first engineered. They are
voi ce quality, delay, jitter, and packet | oss.

A VO CE QUALITY
Users have cone to expect high quality voice

communi cation using current technol ogies. For VolP to be
successful, it nust be able to produce conparable quality
voi ce communi cati on. VolP voice quality is primrily

affected by conpression of the voice signal and the type of
encoding used in VolP applications. Conpression is
inportant in trying to reap the benefits of Vol P because it
reduces the anmount of data transmtted. The benefits of
conpression cone with a price because conpression affects
the quality of the recovered voice signal. The Mean
Opinion Score (MXS) is a subjective scoring that rates the
gquality of a coder/decoder (CODEC) under various conditions
such as background noise and nultiple encodings. Figure 5,

shows an averaged MOS for comon CODECs used in Vol P.

19

Bit Processing Frame Coding

ITU-T Rate, Power, Size, Delay,

Coding Standard kbps MOS MIPS ms ms
PCM G.711 64 4.1 0.34 0.125 0.75
ADPCM G.726 32 3.85 14 0.125 1
LD-CELP G.728 16 3.61 33 0.625 3-5
CS-ACELP G.729 8 3.92 20 10 10
CS-ACELP G.729a 8 3.9 10.5 10 10
MP-MLQ G.723.1 6.3 3.9 16 30 30
ACELP G.723.1 5.3 3.65 16 30 30

Figure 5. Conparison of Conpression Techniques (After
Caput o, 2000)

Each tine a voice sanple is encoded the MOS decreases.
This is inportant because for each segnent of a network
that requires a CODEC translation, the resulting MOS wll
be |lower. (Davidson, 2000) This wll adversely affect the
quality of the received voice signal

Silence Suppression also adversely affects MOS.
Sil ence Suppression techniques are used to save bandw dth
by not transmitting during periods of silence. The problem
with these techniques is that clipping of the conversation

can occur.

Even though conpression and silence suppression reduce
the MOS and degrade the quality of the received signal,
they are still used by sonme VolP applications. Not all
Vol P applications do both. VolP can be tailored, by CODEC
selection, to trade voice quality for bandw dth savings as
desired.

B. DELAY

Delay is the ambunt of tinme it takes a signal to be

digitized, transferred, and then converted back into an

20

anal og signal at the receiver. A delay of 250ms or less is
the generally accepted threshold for comercial tol
quality service. Oten, however, |longer delays are
t ol er at ed. Sonme overseas phone calls and |ong distance
cel lul ar phone calls have delays exceeding 250ns.
Communi cation via satellite is still possible even wth
del ays in excess of 500mns. The sum of all delays in the
systemis called the end-to-end delay. End-to-end delay is
generally referred to as just the delay or latency of the
system There are three types of delay to consider when
di scussi ng Vol P. These are pr opagati on del ay,
serialization delay, and handling del ay.

Propagation delay is the time it takes for a signal to
traverse the physical nedia. For a copper wre, this is
about 8 m croseconds/mle. For applications involving a
few thousand mles this may not be significant but if the
network uses a High Earth Obiting satellite, this delay is
on the order of 500ns which is significant.

Serialization delay is characterized by the nunber of
bits that can be transferred per second. This is not to be
confused with the data rate of the nedia. This can nore
accurately be described as the data rate of the physical
interface. This is generally neglected and not an issue for
Vol P inplenentation since it is such a small contribution

to the overall delay in the system

Finally, handling delays incorporate all delays caused
by manipul ating the data. If 20nms of voice is packaged
into a single datagram the handling delay is this 20ns
plus the tine to actually encode the data. Addi tionally
there is a delay as each piece of equipnent handles the

information. Significant delays occur when data is queued.
21

For nost applications, handling delay is the biggest
contributor to the end-to-end delay, but is also the one
type of delay best controlled through proper engineering of
t he system
C. JI TTER

Jitter is the wvariation in the inter-arrival tine
bet ween packets. Jitter is inportant because if not
accounted for properly it can cause the decoded nessage to
sound choppy. The affects of jitter are usually corrected
by inplenmenting a jitter buffer that delays nessages on the
receiving end l|longer than the experienced jitter. Thi s
allows the information to be replayed at a constant rate.
| mpl enmentation of the jitter buffer does contribute to the
delay but is necessary for maintaining voice quality.
D. LOST PACKETS

Packet 1oss is not unexpected in any network. This is
the reason Transm ssion Control Protocol (TCP) contains a
mechani sm for the retransm ssion of mi ssing packets. The
time that it takes for a m ssing packet to be retransmtted
is unacceptable in VolP. This is the min reason VolP
applications use the User Datagram Protocol (UDP), which
does NOT retransmt |ost packets. The loss of a single
packet can be nmasked by replaying the previous voice
sanple. This technique does not work when nultiple packets
are m ssing. Wien multiple packets are |ost, the decoded
voi ce signal may contain a pause or sound choppy.
Engineering a highly reliable network can mtigate the
nunber of | ost packets.

These technical challenges are not insurnountable
obstacles but rather itens that nust be addressed. When
engi neering a system for VolP, nmechanisns to control voice

22

quality, delay, jitter, and packet |oss nust be included
The next chapter wll examne the current Navy | NVARSAT
comuni cation architecture. Later chapters will show how

this architecture can benefit fromthe transition to VolP

23

TH'S PAGE | NTENTI ONALLY LEFT BLANK

24

V. THE NAVY VO P | MPLEMENTATI ON

As previously discussed, VolP increases efficient use
of bandwi dth by converging voice and data networks. The
Navy currently uses circuit swi t chi ng for voi ce
comuni cations and the Automated Digital Network System
(ADNS) for managi ng data conmuni cations. This chapter will
di scuss using VolP to converge these networks. Vol P wll
be inplemented within the ADNS. This chapter will describe
the current ADNS and review sone of the VOP technical
considerations as they relate to ADNS. Finally, two (2)
possi bl e i npl enentation strategies are presented.

A THE AUTOVATED DI G TAL NETWORK SYSTEM

To manage the increasingly inportant and conplex web
of bandwidth |imted comrunications, the Navy devel oped the
Automated Digital Network System (ADNS). ADNS is designed
to conbine and nmanage the nultiple data comrunications
pat hs that include UHF, SHF and EHF conmunications while at
sea as well as copper and fiber optic connections when
pi er - si de. ADNS provides continuous data connectivity for
t he ship. | f one conmunications path beconmes inoperative,
ADNS is designed to allow another path to handle inportant
traffic. Using this system nobst Unit Level ships
communicate while underway via a 64kbps |NMARSAT | eased
connecti on. This | eased channel is normally configured as
half for data and the other half for Plain Od Tel ephone
System (POTS) connectivity. Figure 6 is a sinplified block
di agram of the ADNS.

25

ADNE

‘ INTEGRAT ED NETWOR K MANAGER ‘

| ! UHF DM

I
c
R

EHF LOR #1 cap KG RF
L.

LAN ROUT ROUTER LII ?
AR EHF LOR #2
OR UHF SEHz
SO ADNS

| N MARSAT B HSD (DUAL e RF
(F INSTALLEDD

uuuuu
RESTER: 5 INMARSAT B HSD

FLLI ! ADNS [’ :
1

Figure 6: Sinplified Block D agram of ADNS (After
Buddenbur g, 2003)

Figure 6 shows the system is conposed of several
security enclaves. These enclaves are nerged with the
secret enclave at the ADNS router wusing Inline Network
Encryption (INE) to form a common off-ship data stream
The data stream then travels through the Tinme Division
Mul tiplexing (TDM/MIX where it is multiplexed with the
circuit switched voice conmunications and sent Vi a
satellite connection to shore.

B. TECHNI CAL CONSI DERATI ONS TO THE VO P | MPLEMENTATI ON

1. Del ay

As previously stated, there is a need to manage del ay
in a VolP inplenentation. Because | NVARSAT uses satellites
in a geostationary orbit, the propagation delay is
significant, commonly nore than 500ns. Al t hough the 250ns

goal for toll quality voice is no |onger feasible, managi ng
26

“handl ing delays’ is still inportant. The effective data
rate of the VolP systemis closely tied to the frame size.
Selecting an appropriate frame size is actually an
optim zation problem A large frame size can lead to a
hi gh efficiency because the fixed overhead associated with
transport and encryption has less inpact on the effective
data rate. But, a large franme size increases handling
del ays and adversely affects voice quality. The sel ection
of an appropriate franme size nust bal ance efficiency needs
with voice quality desires.

2. Jitter

Jitter nust also be closely nonitored. In a |ow
bandw dt h connection, such as |NMARSAT, increasing queuing
delays for data are likely to occur. This delay wll
mani fest as jitter. For an ADNS i nplenentation of VolP to
succeed, the queuing delay nust be controlled. This can be
acconplished by inplementing a Quality of Service (QOS)
nmechani sm that provides priority handling for VolP traffic.
In the latest version of the ADNS, C ass Based Wi ghted
Fair Queuing (CBWQ provides QS. (Barsaleau & Tummal a,
2004) CBWFQ can provide guaranteed bandwi dth and expedited
service for the VolP traffic and ensure a fair allocation
of resources to each ADNS encl ave.

3. Packet Loss

A third factor to consider when inplenenting VolP in
the ADNS is packet | oss. The main contributor to packet
loss is Bit Error Rate (BER). The BER is the probability
t hat an I ndi vi dual bi t Wil | be corrupted during
t ransm ssi on. If a bit 1s corrupted, the packet 1is
di scarded and considered | ost. For a terrestrial network,
BERs are wusually less than 10 and are not often

considered a significant issue. In a Navy system that uses
27

RF transm ssions for data transfer, this is not the case.
For a typical |INMARSAT connection, BERs in the realm of 10
°-10°7 are common. As frame size increase, the probability
of a lost packet increases as well. Additionally, the
negati ve inmpact on voice quality created by that |ost frane
al so increases. Wen determining the frane size for an
ADNS Vol P i npl enentati on, BER shoul d be consi dered.
C TWO POSSI BLE | MPLEMENTATI ONS

1. Direct Vol P | npl enent ati on

The Navy currently uses the secret network as its
cormmon ship to shore and shore to ship routing network.
Al traffic from the wunclassified and SC enclaves are
encrypted using an |PSec device, also referred to as an
Inline Network Encryption (I1NE) device. The encrypted
traffic is then joined with the secret data traffic in the
ADNS router. The INE currently wused by ADNS is the
Tacl ane. Figure 7 depicts the ~current security
configuration of ADNS and shows were VolP traffic wll be
i ntroduced into the network at the UNCLASSI FI ED encl ave.

TP Ship to Ship
y And Ship to Shore

% DWTS Pt-Pt
@ Radio’s Ship to Ship
Serial
SATCOM Pt-Pt
Radio’s Ship to Shore
] SHF, CA Il
Voice

Inmarsat, etc.
PBX
%’/
e |

Figure 7: Current ADNS Ship Configuration (From Casey,
2004)

28

2. An Alternative VolP |Inplenentation

The inpact of the direct inplenmentation presented

above is the addition of overhead to the VolP traffic from
the | NE The INE adds a mninmum of 58 bytes to the IP
dat agr am This increases the effective data rate required

for Vol P inplenentation. Elimnating the overhead of the
INE from voice traffic will increase the efficiency of the
i mpl ement ati on. Fi gure 8 shows an alternative

inplenentation called a “Black ADNS Ship Configuration”

(From Casey, 2004).

Ethernet

TIP

Serial

Voice

PBX

&S =
]

Figure 8 Black ADNS Ship Configuration (From
2004)

BGP4

This proposed solution sends the secret

Ship to Ship
And Ship to Shore

DWTS Pt-Pt
Ship to Ship

SATCOM Pt-Pt
Ship to Shore
SHF, CAlll
Inmarsat

Casey,

encl ave

t hrough an | NE Vol P traffic is conmbined with the other

network traffic at the ADNS router. However, in this

configuration, the VolP traffic does NOI pass through an

| NE. There is no added overhead. This will increase the

efficiency of the Vol P inplenentation.

29

Thi s chapt er i ntroduced t wo possi bl e Vol P
i npl enentations within the Automated Digital Network System
(ADNS). The thrust of this research was to devel op a node
that sinulates these two scenarios. The next chapter

descri bes the nodel devel opnent.

30

V. MODEL DEVELOPMENT

Simulation nodels are a quick and efficient way to
narrow the field of research. Through high |evel nodeling
of a proposed network, quick feasibility studies can be
conducted and future work can be scoped. A nore detailed
nodel can help tune paraneters or verify the correctness
and optimzation of a protocol. All of this can be
acconpl i shed w thout procuring equipnent. Hours worth of

data can be obtained in mnutes worth of runs.

When nodeling, it is easy to over analyze a problemin
an effort to provide a high fidelity nodel. In order to
scope a project and determne what is inportant to nodel
it is necessary to first state the problem as sinply as
possi bl e. The base question to be answered in this
research is: Is it beneficial to pursue the inplenentation
of VolP on Unit Level ships? Oher questions will have to
be answered before a final conclusion can be reached, but
this question nust always be kept in mnd. Once the
guestion has been determned, a nodeling tool nust be
sel ect ed.

A TOOL SELECTI ON

OWeT++ was chosen because the author was famliar
with the package and nodification and extensibility of the
existing functionality are easy to acconplish. OWNeT++ is
a simulation environnent whose primary application area is
the sinmulation of conmmunications networKks. It is flexible
enough to simulate |IT systens, queuing networks, hardware
architectures and business processes as well. Si mul ati on
conponents are witten in C++ and the nodules are witten

in an easy to understand |anguage called NED. OWNeT++ is

31

easy to learn and use and well suited to this research
effort. Appendix B contains a conplete listing of the

OWNeT++ code witten specifically for this research effort.

Once the simulation tool was selected, the next step
was to develop the nodel. The steps used in nodel
devel opnment are descri bed bel ow.

B. MODEL DEVELOPMENT

Although it is possible to nodel every conponent in
the ADNS sinplified block diagram (figure 6), every
conponent was not needed to answer the research question.
The first step was to determ ne which nodes and connections
were inportant and to sinplify the network to only these

nodes and connecti ons.

The last part of the ADNS system from the ADNS router
through the satellite link, was the easiest to sinplify.
The first sinplification was to consolidate the time |ag
introduced by the KGs and the satellite link into a single
del ay. Next the bandwi dth restrictions in the FCCL00 and
the satellite were nodeled using the nobst restrictive
setting. The voice from the FCCL00 was not included
because it was already accounted for in the bandw dth
restrictions. The delay and data rate were conbined into a
si ngl e channel that was nodel ed as a 500ns delay and either
a 32 kbps or 64 kbps data rate.

The ADNS router was nodeled next. The ADNS router
performs two primary functions in the nodel. It both
routes the incomng and outgoing nmessages and provides QS
for the nessages traveling via the |INVARSAT i nk.
Separating these two functions in our nodel nakes it easier
to exam ne various QS nechanisns at a later tinme. Because

of this separation, the OMNeT++ | PSuite standard router was
32

used as the router conmponent and a new conponent called a
WRED Box was creat ed.

The WRED Box was | oosely based on the description of
Wi ghted Random Early Drop (WRED) and Cl ass Based Wi ghted
Fair Queuing (CBWQ found in (Barceleau, 2004). The
conponent actually wused is a scaled down version that
adequately represents the configurations needed by this
research. The WRED Box queues the incom ng nessages into
either a Hgh Priority Queue (HPQ or a Low Priority
Queue(LPQ . Those nessages with a Differentiated Services
Code Point (DSCP) marker of 46 were placed into the HPQ
As long as the HPQ contains itens but has not yet reached
its reserved allotnment of bandw dth, the nodel services the
HPQ The LPQ is serviced when the HPQ is enpty or exceeds
its reserved allotnment. The WRED algorithm for controlling
gueue depth is inplemented on both queues. Because
t hroughput was already <calculated for the HPQ the
measurenents for system throughput were taken at this point
for all types of traffic. The code witten to nodel this
conponent can be found in Appendi x B.

The INE was nodeled next. It was nodeled as a
separate elenment to provide flexibility in the nodel.
Messages that are encrypted can be connected through this
node to incur the INE overhead; those that are not, bypass
it. The INE was created based on the equation found in
(Hucke, et. all, 2003). Rather than actually encapsul ating
the nmessage as described in (Hucke, 2003), the |P Header
field length was nodified to save on conputing resources
when running the sinulation. The code witten to nodel

this conmponent can be found in Appendi x B.

33

The voice traffic was nodeled next. A client was
needed that periodically sends a burst of information and
then waits for a reply. The reply was nodeled after an
actual conversation where the listener responds after a

reasonabl e period of inactivity.

The original plan was to create a voice client based
on an available RTP inplenentation. Further research
showed the only inmpact RTP had on the npbdel was the
addition of 8 bytes to the packet size. At this point
instead of «creating a voice client based on the RITP
i npl ementation, the OWeT++ |PSuite UDP Host was nodified
to create a VolP Host. The client application nodeled the
voice traffic in the follow ng nmanner: Based on the CODEC
rate, franme size, and reply length, a nunber of nessages
are sent, nodeling a voice burst. An internal tineout was
then used to initiate a reply. The tineout was reset with
the arrival of each nessage fromthe transmtting end. The
|l ength of each nessage is increased by 8 bytes to account
for the RTP overhead. A second tineout was added to
control the call cycle. This sinulates a normal phone
bei ng on and off hook. The server side was nerged into the
client to sinplify the reply nmechani sm The code witten
to nodel this conmponent can be found in Appendi x B.

Once the VolP client was witten, an appropriate CODEC
had to be selected. The nodel was built on the prem se
that the CODEC data rate and frame size were the driving
factors in perfornance. The G 723r53 was sel ected because
it requires the |lowest data rate. For the STU Il calls,
however, other factors cone into play. The STU Il was

designed for data over voice and does not performwell with

34

the lower data rate CODECs. Fromresults in (Hucke, 2003),
the G 726r16 was sel ected as the CODEC used for STU capable

conversati ons.

The background traffic was nodel ed next. A UDP client
was selected because a flow of data could be shaped to
provi de constant |loading to the system Initially, using a
TCP client and server was considered. However, further
research showed that managi ng the proper nunber of clients
to create the desired loading would be difficult. The
purpose of the nobdel is not to neasure the amount of
traffic passed through the network but instead to neasure
the change in the anount. Therefore, the nodel could be
simplified by conbining the «clients from the three
enclaves. It is the relative change in the aggregate
traffic that is of interest to this research. I f further
work is contenplated on QS nechanisns, it may be required
to separate the types of traffic and identify the source
encl ave of each.

The standard UDP client was considered, but it did not
gi ve enough control over the anmobunt of data that was being
sent, therefore this client was also rewitten. The
Traffic UDP Host was created to constantly transmt packets
based on the desired data rate and nessage size. On the
receiving side of the host, the nmessage is dropped once the
desired netrics are recorded. The code witten to node

this conmponent can be found in Appendi x B.

This conpleted the nodeling of the conponents that
make up the overall VolP nodel. Before the overall nodel
could be run, tw mmjor questions had to be answered.
First, what is the optimal frane size? Second, do TCP

congestion control nethods preclude the use of UDP data
35

streans as an appropriate abstraction for accurately
nodel i ng conposite network traffic? The followi ng section
descri bes how t hese questions were answer ed.
C. | NTERVEDI ATE MODELS

1. Frame Size

In order to determne the optimal frame size, two
network sinulations were built wusing conponents already
nodel ed. The code witten creating this sinmulated network
can be found in Appendix B. The results of these
simulations were used to determne the effects of various
frame sizes on the required effective data rate for
different CODECs when the I P and | NE overheads are appli ed.
Figure 9 shows the network used to test this CODEC

efficiency at various frane sizes with an I NE

-
;;;;;;;

inell rauter] wred] wred? routerd ine2l _—
woipclient] 1 woipclient21

Figure 9: Vol P network with I NEs

Runs were conducted at 16 kbps and at 5.3 kbps wth
frame size varying from 10 to 500 ns. The network was
nmodified to renove the INE and the runs were repeated.
Measurenents for throughput were taken at the node | abel ed

wredl.

Figure 10 shows a graphical representation of the
results. It plots the required effective data rate verses

frame size for the four previously described runs. The

36

lower the data rate required, the nore effectively the

CODEC performs at that frame size.

70000

60000 -

50000 -

40000 - ——5.3kbps
—— 16kbps
——5.3kbps (W/ INE)

Datarate (bps)

30000 A \ —— 16kbps (w/ INE)
20000

10000 -

0 50 100 150 200 250 300 350 400 450 500

Frame Size (ms)

Fi gure 10: Ef f ect of frame si ze on CODEC
per f or mance

From figure 10, we see the larger the frane size the
nmore effective the CODEC performance as woul d be expected.
As frane size increases above approximately 140 nms the
i nprovenent is marginal. Taking into account the earlier
di scussion of handling delay, the 140 ns frame size is the
optim zed solution between efficiency and voice quality.
The jagged steps in the curves that correspond to the
networks with an INE result from the padding introduced by
t he Tacl ane. This padding is used to obtain a 48-byte
increnent needed in the encryption of the packet and
inplies that the best performance will be achieved where
the packet size is near a nultiple of 48 bytes. The 140 ns

frame size fits this requirenent as well

37

These results are based upon a generic CODEC. Vendor
specific inplenmentations nay add |ook ahead or other
nmechani sms that increase quality of service but also change
the effective CODEC data rate. Therefore, these results
should be nodified when considering optimal settings for
actual CODEC use.

2. | npact of TCP Congestion Control

After initial design considerations were conplete, a
conversation with M. Ed Hucke from SPAWAR PMN 179, the
engi neers of ADNS, nmade us question the decision to nodel
the network traffic as UDP packets. M. Hucke stated a
concern that the TCP Slow Start congestion control
mechani sm may reduce the anount of traffic that could be

transmtted in the periods w thout voice transm ssions due

to a lag in resunption of traffic to fill the available
bandw dt h. (Schilke, 1997) <confirms this could be an
i ssue.

To test the theory, the standard TCP client was
nodified to collect ‘goodput’. Goodput is the rate at
which wunique data arrives at the client. The network
simulation shown in Figure 11, was designed to test the
effects of the Slow Start algorithm on changes to the
bandwi dth available for low priority nessages. The code
witten creating this sinulated network can be found in
Appendi x B. The results of this sinulation would determ ne

if UDP accurately nodels aggregate network traffic changes.

38

directrw

LA A LA A LA L0R LA QQ

tcpolienfi[0] topolidhtl[1] tcpdllentl[2] tofclientd [3] pclient][4 tcpolient] [5 tepolientHE topg
Ll '~‘__i‘
oipc nt'l [O] woipl 'I “f =t e
I} | (YF ._J_';f_-.._.-f.- R 3
ine'l [0 e Ty 1

ine[0]

Ll

aipclient2[Vl:ll|:ll3|l t2[1] waypclients]

coserverd [0 tenzervar][1] benservar] [P] tepserver (3] enseever] (4] bensereer][A] tepzereer][B] tepserver][F] tonse

Fi gure 11: TCP Cdient Network

The network was configured for a variable nunber of
TCP clients with matching servers and three VolP Cients.
A heavy | oad, nedium |load, and light |load were set in the
configuration by using 18 clients, 3 clients, and 1 client
respectively. After each run, the anount of data received
fromeach client was conbined in an Excel spreadsheet. The
data was sorted by tinmestanp and the anmount of data
received by a client was divided by the time difference
between this tinestanp and the previous tinestanp. Thi s
cal cul ation provided the network goodput.

Figure 12 shows graphical results of the run under
heavy | oad. It plots the goodput as a data rate verses
time. Periods where congestion control effects are

potentially affecting the network traffics ability to

39

respond to cessation of voice transm ssions would appear as
periods of reduced goodput occurring in the absence of

voi ce transmn ssi ons.

70000

60000 -

50000

40000

—— Data Tranmissions

—— Voice Transmissions

Data Rate (bps)

30000

20000 -

|
Il
l

0 100 200 300 400 500 600

Time (s)

10000 -

Fi gure 12: Data Rate for network with 18 Cients

As expected for the heavy |oad, shown in Figure 12,
the amount of data queued and the nunmber of clients
receiving data tended to danpen nobst congestion control
effects. There was no evidence that the slow start
prot ocol would cause a problemwith nodeling the traffic as
UDP packets.

Wen the runs were repeated at a medium and |ight
| oad, the nunber of areas where congestion control was
potentially affecting the ability to nodel network traffic
using UDP increased. It is not as clear, however, if these
are slow start effects after the cessation of voice
transm ssi ons. Figure 13 shows that with three clients,

sonme of the periods wthout data being received by a client

40

have extended. If this was an issue that affects the use
of nodeling as UDP, these periods would consistently appear
at the end of each voice transm ssion. Figure 13 clearly
shows this is not the case. Therefore, it can be assuned
UDP will still accurately nodel the network traffic in this

scenari o.

70000

60000 I] | .‘] -\
I

50000 -

40000 H J

—— Data Tranmissions
—— Voice Transmissions

Data Rate (bps)

30000
20000
10000 - F\

0 100 200 300 400 500 600

Time (s)

=
T
_l:

Fi gure 13: Data Rate for Network with 3 Cients

Figure 14 shows the graphical results of nodeling the
network with a light l|load of one client. Once again,
extended periods with reduced goodput are present. Agai n,
the lack of consistency in location and duration can only
lead to the conclusion that these periods are not affecting

transitions fromvoice transn ssi ons.

41

70000
60000 | T P l’w
50000

40000

—— Data Transmissions

—— Voice Transmissions

Data Rate (bps)

M
30000 -
20000 -
10000 -
0 T
100

Fi gure 14: Data Rate for Network with 1 dient

200 300 400 500 600

Time (s)

To further ensure that TCP data traffic can be nodel ed
as a UDP data flow, the goodput between voice transm ssions
for each case was conpared with conparable tinme periods on
a simulation run wth zero voice clients. The data
received on this final run was within 3.5% of the data in
each of the previous sinmulations, further show ng that our
decision to nodel using UDP traffic is valid.

Now t hat the conponents have been nodel ed, the optinmal
franme size determned, and the use of a UDP Host for
Traffic verified, the overall nobdels testing the two
different VolP inplenmentations were built. The code
witten creating this sinulated network can be found in
Appendi x B. The network sinulations were configured with a
UDP Traffic Client and a variable nunber of VolP Cients as

shown in Figure 15.

42

trafficclient2

Fi gure 15: Network for Determning VolP Transition
Efficiency

Each set of runs varied the call cycle while keeping
the nunber and configuration of the clients the sane.
Detailed results, concl usi ons, and future work are

presented in the next chapter.

43

TH'S PAGE | NTENTI ONALLY LEFT BLANK

44

VI 1. RESULTS AND CONCLUSI ONS

Is it beneficial to pursue the inplenmentation of VolP
on Unit Level ships? To answer this question the nodel
described in the previous chapter was run varying the call

cycle while keeping the nunber and configuration of the

clients the sane. The sinulated network was nodified to
investigate various potential inplenentation strategies
described in Chapter V. Below are the results of those

si mul ati ons.
A DI RECT | MPLEMENTATI ON OF VO P

The direct VolP inplenentation was sinulated using
varying nunbers of VolP clients that sent data through an
| NE. Figure 16 shows graphical results obtained from the
di rect inplenentation sinulation nodel.

——1POTS
2 POTS
1STU
——1POTS 1STU
——2POTS 1STU
—+—28TU
—8—2 POTS 1 STU w/ Silence Suppression
3 POTS w/ Silence Suppression
4 POTS w/ Silence Suppression
5 POTS w/ Silence Suppression

Percent Change (from 32k data) (%)

6 POTS w/ Silence Suppression

Call Cycle (%)

Fi gure 16: Ef fects of cal | cycle on Vol P
| mpl enent ati on

45

Figure 16 plots percent change in goodput conpared to
a baseline of 32k data verses the call cycle percentage. A
gain is realized when the percent change in goodput is
greater than zero. The ideal case would be where the
percent change in goodput is greater than zero through 100%
call cycle. The different runs represent different

possi ble conbination of POIS and STU lines in use

si mul t aneousl y. Run configurations do not i ncl ude
configurations that wll exceed the total avai l abl e
bandwi dt h.

Figure 16 shows an increase in the throughput for data
traffic over the current ADNS configuration for up to a 72%
call cycle when inplenenting VolP using two (2) POTS |ines
and one (1) STU Iline. Wth silence suppression enabled a
t hroughput gain is seen through close to a 100% call cycle.
Anot her benefit of the transition to VolP shown by the
results of this sinulation is the ability to have nore POTS
lines than are currently available. Wth silence
suppression enabled, six (6) concurrent POTS calls were
possible at near 100% call cycle before a decrease in
performance is seen conpared to current throughput |evels.

The current ADNS configuration allows for up to two
(2) POTS and two (2) STUs to be operated sinultaneously.
The Voip inplenentation sinmulated above cannot support this
configuration and is limted to two (2) POIS and one (1)
STU or two (2) STUs. This limtation comes from the 64
kbps bandwidth limtation of the currently fielded | NVARSAT

configuration.

The direct inplenmentation nodel was nodified to use a
potential |NMARSAT upgrade to increase bandwidth to 128

kbps, which is comercially available. Figure 17 shows the
46

ability for a VolP inplenentation under these conditions to
support up to five (5) STU lines.

300
250

200

——32K Voice
——2POTS 2STU
2POTS 1STU
-~ 2STU
——2POTS
—18TU
——38TU
——48STU
——58TU

150

100

50

Percent Change (from current configuration)

-50

-100

Call Cycle (%)

Figure 17: Upgraded 128K | NMARSAT

B. ALTERNATI VE VO P | MPLEMENTATI ON

The overhead caused by the INE can be elimnated by
transitioning to Black Voice routing as discussed in
Chapter V. The direct network nodel was nodified by
removing the INE nodule associated with each VolP Cient.
Figure 18 shows the results of the sinulations run under
these conditions. This configuration can support tw (2)
POTS and two (2) STU lines wthout upgrading the | NVARSAT
equi pnent .

47

100

80

60 4

—— 32K voice
40 q —18TU
2 POTS
1POTS 1 STU
——2POTS 1STU
——2POTS 1 STUw/ Silence Suppression
—— 2 POTS 2 STUw/ Silence Suppression

20

Percent Change (from 32k of Data)

-20 4

-40

Call Cycle (%)
Fi gure 18: Bl ack Voi ce Routing

C. CONCLUSI ONS

This investigation has shown the benefit of converging
the voice and data networks for wunit |evel ships. The
Center for Naval Analysis docunented the POTS usage for two
battle groups during their JTFX s. In their letter CME
D0008489. A1 of June 2003, the authors stated that POIS
usage for the 18 ships using |INMARSAT channels was 8.1
percent. (Hucke, 2003) Using an 8% call cycle as a point
of reference, we see approximately an 85% increase in
bandwi dt h available for all configurations. In order to
realize these gains it is not necessary to devel op a CODEC
specifically for the STU line, it is not necessary to
transition to a Black Routing paradigm nor upgrade the
| NMARSAT connection to 128kbps. This does not nean that
any of these endeavors should be abandoned since all wll
lead to increases in performance that will nost |ikely be

48

required in the future. As the Navy beconmes nore NET-
CENTRIC WARFARE oriented, additional capacity wll be
needed. | mpl ementing Vol P and taking advantage of the
additional options is one way to nmeet this future need.
D. FUTURE WORK

This is not the end of developnent for this nodel. In
its current state, this research has shown the nodel is
able to provide a quick feasibility study. Wth a
refinement of several conponents, however, it could be used
to decide which QS protocols show the greatest potential
benefit and where in the network they are best utilized.

Al though it was appropriate to nodel the background
traffic as a single UDP stream in this research effort,
many future investigations may need greater fidelity. \Wen
the stable release of |PSuite is available, the nodel
should be transitioned and a goodput analysis nethod
devel oped for TCP.

A fleet denonstration of the direct inplenentation for
VolP is currently scheduled for the sumer of 2004.
Results from that denonstration should be used to refine

t he nodel for future testing.

A nore efficient neans of achieving secure voice
conmuni cations is needed in the form of a native VolP
device that can take advantage of silence suppression and

al so use |ower data rate CODECs.

49

TH'S PAGE | NTENTI ONALLY LEFT BLANK

50

APPENDI X A. GLOSSARY

Anal og-to-digital Converter (ADC) - accepts an analog
input-a voltage or a current-and converts it to a digita

val ue that can be read by a m croprocessor.

Asynchronous Transfer Mde (ATM - a network technol ogy
that is based on transferring information in cells of fixed
si ze. It well suited for converged networks because it
creates a channel at the beginning of a data transfer
session, allocating a fixed amount of resources to that

sessi on.

Automated Digital Network System (ADNS) — a system desi gned
to conbine and manage the nultiple communications paths to
i nclude UHF, SHF and EHF comrunications as well as copper
and optical pier side connections to provide ships force
conti nuous data connectivity for high priority information.

Aut omati c Digital Net wor k (AUTQODI N) - a | egacy
conmmuni cations system for ensuring the delivery of nessage
based comruni cations throughout the Departnent of Defense.
For nost purposes it has been replaced by DVS.

Bandwi dth - traditionally the difference between the upper
and | ower frequencies of a transm ssion band. Recently it
has al so conme to nean the anount of data that can be passed
along a communications channel in a given period of tine

measured in bits per second (bps).

Bit Error Rate (BER) - the rate at which data is corrupted
expressed as a percentage.

Centrex Line - a service purchased from the |ocal exchange

carrier that groups phone lines into a closed user group

51

(CUG) . This provides additional services such as cal

transfer and call groups w thout the purchase of a PBX

Class Based Wighted Fair Queuing (CBWQ - provides
Quality of Service (QS) by separating traffic into queues
based upon a differentiated Services Code Point (DSCP) and

then all ocati ng each queue a share of the bandw dth

Closed User Goup (CUG - a grouping of business phone
lines that allows the phone conpany to provide PBX services

fromtheir office.

CCODEC (coder/decoder) - a schema for encoding or decoding
information from an analog to digital or digital to anal og

form

Convergence - the conbining of nultiple networks such as

voi ce data and video into one network.

Datagram - a self-contained, independent entity of data
carrying sufficient information to be routed from the
source to the destination conputer wthout reliance on
earlier exchanges between this source and destination
conputer and the transporting networKk.

Def ense Message System (DMS) - a system based upon enmil
st andar ds to del i ver nmessage based commruni cati ons
t hroughout the Departnent of Defense. It was designed to
repl ace AUTCDI N.

Delay - in VolP it is the tine it takes for speech to

transmt fromthe speakers nmouth to the |listeners ear.

Differentiated Service (DiffServ) - wuses a code in the
Type-of -Service (TCS) field of the IP header to determ ne
priority handling.

52

Digital -to-anal og Converter (DAC) - accepts a digital input

and converts it to a voltage or current output.

Enhanced 911 - a safety related service that associates
| ocation information with an energency call. Because the
i nformation cones from the phone conpany, systens such as a
traditional or VolP PBX nmust have a nechanism to provide

this information.

Extrenel y-high Frequency (EHF) - the frequency spectrum
from30 — 300 Giz and is often used for mlitary satellite

conmmuni cati ons.

FCC100 - a Time Division Miltiplexing (TDM/ Miltipl exer
(MJUX) used in the ADNS system

Gat ekeeper - used in VolP to control access to the network,
manage bandwi dth, and serve as the address resolution
conponent .

Gateway - provides the translation functions for the voice

/ data conversi ons.

H 323 - an ITU- T standard that offers audio, video and data
comruni cati ons across packet-based network infrastructures.
H. 323 provi des st andar ds for encodi ng, bandw dt h
managenent, adm ssion control, address translation, cal

control and nmanagenent, and links to external networks. The
H. 323 protocol stack conprises a set of protocols that ride
on TCP/IP and UDP/IP, where TCP is used for call setup and

control, while UDP is wused for data transm ssion and
reception.
Inline Network Encryption (INE) - an device to provide

payl oad encryption on a packet by packet basis but |eave
the IP header information in plain text. The device that

is currently in use for ADNS is the KG 194 TACLANE
53

| P Security (I1PSec) - A protocol that provides security for
transm ssion of sensitive information over unprotected
net wor ks such as the Internet.

Integrated Services Digital Network (ISDN) - a set of
comuni cations protocols that specify the carrying of
voice, video, and data over a single wre that s

eventual | y supposed to replace POTS.
Jitter — the variation in delay between packets.

Key System — a business tel ephone system that generally is
cheaper than a PBX but also contains fewer features.

Cenerally suited for smaller offices.

Latency — see del ay.

Mean Opinion Score (MJS) - a subjective scoring system for
rating the quality of voice conmunications. ot ai ned by
having a nunber of people listen to various Vvoice

transm ssions and averaging their ratings of between 1
(worst) and 5.

Medi a Gateway Control (MEGACO H. 248) - a standard devel oped
jointly by the IETF and ITU to recomend controls for
gat eways between networks.

Multi Gateway Control Protocol (M3CP) — an | ETF standard to

recommend controls for gateways between networks.

Multi-Ilevel Precedence and Preenption (M.PP) — a priority
scheme in mlitary comrunications that give priority to
certain calls and specifies tineframes for handling those
cal | s.

Mul ti point Control Unit (MCU) - <connects three or nore
terminals in a “conference call”.

Packet — a generic termused to describe a unit of data.
54

Plain A d Tel ephone System (POTS) — a term used to descri be

the traditional, anal og based, tel ephone system

Private Branch Exchange (PBX) — a business tel ephone system
that allows the business conplete control over its

configuration.

Public Switched Tel ephone Network (PSTN) — the collection
of interconnected systens operated by the various tel ephone

conpani es and adm ni strations around the worl d.

Quality of Service (QS) - a networking term that specifies

a guaranteed t hroughput |evel.

Radio Frequency (RF) - a frequency in the range wthin
which radio waves may be transmtted, from about 3
kil ohertz to about 300, 000 negahert z.

Real -Time Transport Protocol (RTP) - provides real-tine
delivery of data, in particular voice traffic. RIP is
typically built on UDP but includes a sequencing systemto
detect m ssing packets, as well as information regarding
the payload type including the audio and video encoding
used.

Real -Time Transport Control Protocol (RTCP) - provides a
means to exchange quality of service infornmation between
nodes usi ng RTP

Secure Tel ephone Equi prent (STE) — the replacenent for the
STU-111.
Secure Tel ephone Unit — Third Generation (STU-IIl) - a

devi ce designed to enable secure voice conmunications over

an unsecure voi ce network.

Server — in VolP this is a general termfor the Gatekeepers

and Gat eways.
55

Session Description Protocol (SDP) - used by other

protocols as a standard format to descri be a session.

Session Initiation Protocol (SIP) - considered as the
| ETF s replacenent for H 323, and is a text-based signaling

protocol sent over TCP or UDP

Sil ence Suppression — a nmethod of conserving bandwidth in a
Vol P call by not encoding and sending voice packets during

peri ods of silence.

Super-hi gh Frequency (SHF) - the radio frequencies between
3 -30 Giz. Well suited for satellite comunication, it is
t he band in which | NMARSAT oper at es.

Tie-line — a communi cations |ink between two PBX s.

Time Division Multiplex (TDM - a type of multiplexing that

assigns each voice or data streamit own tineslot.

Transm ssion Control Protocol (TCP) - a connection-oriented
protocol that provides guaranteed delivery of its payl oad.

U tra-hi gh Frequency (UHF)

Unit Level Ship — used to contrast with a force |evel ship

(LHA/ LHD or CV/ CWN). In this paper it generally refers to
a DDG or CG
User Agent — the software that interfaces with and acts on

behal f of the user. Sonetines referred to as a term nal.

User Datagram Protocol (UDP) - a connectionless protocol

t hat does not provide guaranteed delivery.

Virtual Private Network (VPN) - a network designed for

private information created using a public network to

56

connect the nodes. Encryption is wusually enployed to
ensure that only authorized users have access to the

private networKk.
Voi ce Activity Detection (VAD) — see silence suppression.

Voi ce over Internet Protocol (VolP) — the transm ssion of

voi ce over an | P based networKk.

Wei ghted Random Early Drop (WRED) — a congestion avoi dance
mechani sm that drops packets before congestion occurs,
based upon precedence. Lower priority packets are nore
likely to be dropped in order to reduce congestion and

avoi d having to drop higher priority packets.

57

TH'S PAGE | NTENTI ONALLY LEFT BLANK

58

APPENDI X B. SI MULATI ON CCDE

The following sinmulations were witten to run using
Omet pp-3. 0a3 and | PSuite-20040322 which can be obtained
from ww. ommet pp. org. Later versions of the software
change the nechanisnms for creating and sendi ng nessages and
will require nodifications to this code. Thi s appendi x
begins with changes that were nade to the |PSuite source
code to fix a few bugs and to allow for data collection in
the TCP dient Application. The second section provides
the source for the basic conponents followed by the [ast
section with the source for the networks used for anal ysis.
A CHANGES TO | PSU TE SOURCE
| PSui t e- 20040322\ Appl i cat i ons\ TCPApp\ pr ocserver. cc

Line 110
Change

nmsg = receive(appl _tineout);

To
goto broken;//application term nates connection
Fixes — Problem that the client will continue to wait
if the server term nates connection due to a tineout. Thi s

fix sends the application into existing code for handling a

br oken connecti on.

Li ne 178
Change

nmsg = receive(appl _tinmeout);
To

59

goto broken;//application term nates connection

Fixes — Problem that the client will continue to wait
if the server term nates connection due to a tineout. Thi s
fix sends the application into existing code for handling a

br oken connecti on.

Li ne 217
Change
nmsg = receive(appl _tinmeout);
To
goto broken;//application term nates connection

Fixes — Problem that the client will continue to wait
if the server term nates connection due to a timeout. This
fix sends the application into existing code for handling a
br oken connecti on.

| PSui t e- 20040322\ Appl i cati ons\ TCPApp\ TCPO i ent. cc
Li ne 293
| nserted
//added to fix prob with close

abort = new cMessage(" TCP_ABORT", TCP_C _ABCRT);

abort->addPar ("src_port") = local _port;
abort - >addPar ("src_addr") = | ocal _addr;
abort - >addPar ("dest _port") = rem port;

abort - >addPar ("dest _addr") = rem addr;

abort->addPar ("tcp_conn_id") = tcp_conn_id;

60

//no data bits to send
abort->set Lengt h(0);

/I no data packets to receive
abort->addPar ("rec_pks") = 0;
/I make del ay checki ng possible
abort->set Ti nest anp() ;

//send "receive" to "TcpMdul e"
send(abort, "out");

Fi xes — TCP nodule waits for the client sends a close
nmessage to the client only once and then waits for a reply.
For large nessages, the client is still processing its
queues and does not send the reply expected. This fix wll
use the existing abort nechanismto continue the process of
cl osing the connecti on.

| PSui t e- 20040322\ Nodes\ | PSui t e\ TCPUpper Layer s. ned
Li ne 63-64
Change

/I message | ength = input (8000, Nunmber of bits to
be received: ");

message | ength = 8000;
To

message length = input (8000, "Nunmber of bits to
be received: ");

/I message_ | ength = 8000;

61

Fixes — This change allows the nessage length to be

specified at run tine.

| PSui t e- 20040322\ Transport\ TCP\t cpnodul e. cc
Li ne 84
Add
cQut Vect or *goodput; //jak for recordi ng goodput

cQut Vector *avg_goodput ; /ljak for recording
goodput

cQut Vector *rec_bits;//jak for recordi ng goodput

Fixes — Adds the vectors needed to record goodput

cal cul ati ons.

Li ne 92
Add
/1jak for goodput cal cul ations

cQueue bw nmsg q; //store nessages for goodput
cal cs

simime_t span; //length of tinme between nessages
for goodput cal cul ation

double bits; //length of all nsgs in bw nsg_q

Fi xes — Vari abl es needed to cal cul ate goodput.

Li ne 191
Add

~TcpModul e() ;
62

Fixes — Wen closing OWeT or rebuilding a network,
Wi ndows reports a nenory access violation for networks that
use the TCP nodul e. This adds a destructor that will fix
one of the problens causing this error. This fix is from
Andras Varga and is included in subsequent releases of
| PSui t e.

Li ne 195

/1 Added per Andres to fix error when term nating
application

TcpModul e: : ~TcpMdul e()
{
/'l clear unused TCB or active connections
TcbList::iterator iter = tcb_list.begin();
while (iter I'=tcb_list.end())
{
TcpTcb *tcb_block = (TcpTcb *) iter->second,

while (tcb_block->tcp rcv_rec_list.length() >
0) {

SegRecor d* seg _rec = (SegRecord *)
tcb_bl ock->tcp_rcv_rec_list.pop();

del et e seg_rec->pdat a;

}

del ete tcb_bl ock

iter ++;

63

while (!'bw nsg q.enmpty())

del ete((cMessage *)bw nsg_d. pop());
del et e tcpdel ay;

del ete cwnd_si ze;

del ete send_seq_no;

del ete rec_ack _no;

del ete goodput; //jak for goodput

del ete avg _goodput; //jak for goodput

}

Fixes — Wen closing OWeT or rebuilding a network,
wi ndows reports a nenory access violation for networks that
use the TCP nodul e. This adds a destructor and popul ates
it wwth code that was in the finish nethod. This fix wll
correct one of the problens causing this error. This fix
is from Andras Varga and is included in subsequent releases
of | PSuite.

Li ne 238

Add
/ljak — name vectors for recordi ng goodput
goodput = new cQut Vect or (" Goodput ") ;
avg_goodput = new cQut Vect or (" Avg_Goodput ") ;
rec_bits = new cQutVector("Rec_Bits");

span = strToSintinme("2s"); [//jak-tine span to

consi der in goodput calcs
bits = 0;//jak - initialize

64

WATCH(bits);//jak for goodput

Fixes — Initialize vectors and variables for goodput
cal cul ati ons.

Li ne 259
Del ete
/'l clear unused TCB or active connections
TcbList::iterator iter = tcb_list.begin();
while (iter '=tcb list.end())
{
TcpTcb *tcb_block = (TcpTcb *) iter->second;

while (tcb_block->tcp_rcv_rec_list.length() >
0) {

SegRecor d* seg_rec = (SegRecord *)
tcb_bl ock->tcp_rcv_rec_list.pop();

del ete seg_rec->pdat a;
}
del ete tcb_bl ock
iter ++;
}
del et e tcpdel ay;
del ete cwnd_si ze;
del ete send_seq_no;
del ete rec_ack_no;

del ete rec_seq_no;

65

Fixes — Wen closing OWeT or rebuilding a network,
Wi ndows reports a nenory access violation for networks that
use the TCP nodul e. This adds a destructor that will fix
one of the problens causing this error. This fix is from
Andras Varga and is included in subsequent releases of
| PSui t e.

Li ne 755-776
Unconment

Fixes — Cient application will continue to wait for a
cl osed nessage from TCP nodule until a tineout is received
and an abort is initiated. This code ends a cl osed nessage
to the client application even if connection not being
aborted. Unknown why it was commented out other than the
mechani sm does not work if the conplete nessage being
received is |arge.

Li ne 850
Add

/ljak — calculate goodput whenever a packet is

recei ved fromthe server
if (eventsource == FROM | P)

{

//renove nessages older than the w ndow of
i nterest

whi |l e ('"bw nsg _q. enmpty() &% ((((cMessage
*Ybw_nmsg_qg.tail ())->tinmestanp())<=(sinmime()-span)))

del ete ((cMessage *)bw nsg_g. pop());
66

doubl e gbits = nunBi t sl nQueue(bw _nsg Q) ;

//calc total bits received in wi ndow
i f (gbits>0)

goodput - >record((qgbits-((cMessage
*Ybw nmsg_qg.tail ())->length())/(simlinme()-((cMessage
*Ybw nmeg_g.tail ())->tinmestanp())); /1 divide t he bits
received by the tine span — oldest nessage is renoved to
allow the bits to reflect those received in an actual span

of tinme and make the cal cul ati on nore accurat e.

avg_goodput - >record(bits/sinilinme());

/| average over entire run

if (!'bw.nsg _q.enpty())

rec_bits->record(((cMessage
*Ybw nmsg_g.tail())->length());//record bits received

}

Fi xes — Cal cul ates goodput whenever a new nessage isS
received fromthe server

Li ne 2255
Add
/ljak — record bits received
cMessage *bw nsg = (cMessage *) pdata->dup();
bits = bits+bw nsg->l ength();
bw nsg- >set Ti mest anp(si mTinme()) ;
bw nsg _q.insert(bw nsg);

Fixes — Records the size of the nessage received to

per f orm goodput cal cul ati ons.
67

Li ne 2261
Add

/ljak - flushes duplicated part of nessage in

current packet

fl ushQueue(bw nsg_q, (tcb_bl ock->rcv_nxt -

tcb_bl ock->seg_seq), false);

bits = bits - ((tcb_block->rcv_nxt - tcb_block-
>seg_seq) *8) ;

Fixes — Flushes that part of a nessage that has

al ready been recorded to prevent double counting a nmessage.

Li ne 2268
Add

/ljak — record parts of nessages received out of
order for accurate reflection of goodput

cMessage *bw nsg = (cMessage *) pdata->dup();
bits = bits+bw nsg->l ength();

bw neg- >set Ti nest anp(si mli nme()) ;

bw nmsg_q.insert(bw nsq);

Fi xes — Records nessages that were received out of
or der to ensure accurate accounti ng for goodput

cal cul ati ons.

| PSui t e- 20040322\ Tr ansport\ UDP\ UDPPr ocessi ng. cc

Li ne 147

68

Add

i pl f Packet - >set Di f f Ser vCodePoi nt (udpl f Packet -
>get CodePoint()); //--added by jak to transfer DSCP
to | P packet

Fi xes — Populates the DSCP in the IP Header TCS. This

was not previously done even though the nmechani sm exi st ed.

/] file: |INE ned

/] author: Janes Knol

/1l Date: 13 May, 2004

/1 This is an inplenmentation of an | NE based upon the

/'l Tacl ane description found in Analysis of Quintum

/'l Tenor Vocoding for Support for Secure Voice, witten by
/'l Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis,
/1 Bart, Ron, \WAdler, Andrew, Arendale, Ron, Et. al

/1 1t is conposed of this file, an encoder, and a decoder.
/1 Plain text is sent in the plainln gate and is encrypted
/1 and sent out the cypherQut gate. Encrypted packets are
/1l sent into the INE via the cipherln gate and is decrypted
/1 and output through the plainQut gate. The |INE was

/'l created to change the length of the I P header rather

/1 than encapsul ating the nessage in a new nessage in order
69

/'l to save on resources. As a result the decrypted packets
/1 still contain padding in the |IP header, but are the

/'l correct length in the UDP header.

i mport
"Li nkLayer",
"1 NEEncode",

"| NEDecode" ;

nodul e | NE
gat es:
in: plainln; //unencoded packets in
in: cypherln; //encoded packets in
out: plainQut; //decoded packets out
out: cypherQut;//encoded packets out
subnodul es:
pl ai nProcess: | NEEncode; [l Encodes the pl ai nt ext
di splay: "p=100, 60; i =fork";
cypher Process: | NEDecode; //Decodes the cyphertext
di splay: "p=160, 60; i =fork";

plainnetlf : LinkLayer;..//Handles the Link |ayer
i nformation

par anet er s:

NW Narme = " PPPModul e";
70

di splay: "p=80, 120, row; i =i face";

cyphernetlf : LinkLayer; /1 Handl es t he Li nk

| ayer information
par anet ers:
NW Nanme = " PPPModul e";

di splay: "p=120, 120,row; i =i face";

connecti ons nocheck:
/'l connections to network outside
plainln --> plainnetlf.physln;
pl ai nnet | f.input QueueQut --> plainProcess. physln;
cyphernet | f. out put Queuel n <-- pl ai nProcess. physQut;

cypherQut <-- cyphernetlf. physQut;

cypherin --> cyphernetlf.physln;
cyphernet|f.input QueueQut --> cypherProcess. physln;
pl ai nnet | f. out put Queuel n <-- cypherProcess. physQut;

pl ai nQut <-- plainnetlf.physQut;

endnodul e

/] file: | NEEncode. ned
// author: Janes Knol

11
71

/] Date: 13 May, 2004

/11

/1 An inplenentation of an | NE encoder based upon the

/'l Tacl ane description found in Analysis of Quintum

/1 Tenor Vocoding for Support for Secure Voice, witten by
/'l Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis,

// Bart, Ron, \Wadler, Andrew, Arendale, Ron, Et. al

si npl e | NEEncode
par anmet er s:
gat es:
in: physlin; //in fromnetwork interface
out: physQut;//out to network interface

endsi npl e

/] file: | NEEncode. cc

/] author: Janes Knol

/1 Date: 13 May, 2004

11

/1 An inplenentation of an | NE encoder based upon the
/'l Tacl ane description found in Analysis of Quintum

/'l Tenor Vocoding for Support for Secure Voice, witten by
72

/'l Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis,

// Bart, Ron, \Wadler, Andrew, Arendale, Ron, Et. al

#i ncl ude <ommet pp. h>

cl ass | NEEncode : public cSi npl eMobdul e

{
publ i c:
Modul e_C ass_Menber s(1 NEEncode, c¢Si npl eModul e, 0);
virtual void handl eMessage(cMessage *nsQ);
b

Def i ne_Mbdul e(| NEEncode) ;

voi d | NEEncode: : handl eMessage(cMessage *nsgQ)

{
doubl e nmsg_l ength = nmsg->length()/8; //length in Bytes

/] Cal cul ate encoded | ength by add 12 bytes of security
/[l information to the nmessage and then pad to a 48 byte
/[l increment. Another 20 bytes of security information
/1l is then added along wwth a new 20 byte | P header.

nsg | ength = ceil ((nmsg_l engt h+12)/48) *48+40;

73

nsg- >set Lengt h(nmsg_l ength*8); //length in bits

send(nsg, "physQut");

/1 file: | NEDecode. ned

// author: Janes Knol

/|l Date: 13 May, 2004

/1 An inplenmentation of an | NE decoder based upon the

[l Tacl ane description found in Analysis of Quintum

/1 Tenor Vocoding for Support for Secure Voice, witten by
/'l Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis,

// Bart, Ron, \Wadler, Andrew, Arendale, Ron, Et. al.

si npl e | NEDecode
par anmet ers:
gat es:
in: physlin; //in fromnetwork interface
out: physQut;//out to network interface

endsi npl e
74

/] file: | NEDecode.cc

// aut hor: Janes Knol

/| Date: 13 May, 2004

/1 An inplenentation of an | NE encoder based upon the

/'l Tacl ane description found in Analysis of Quintum

/1 Tenor Vocoding for Support for Secure Voice, witten by

/'l Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis,

// Bart, Ron, \Wadler, Andrew, Arendale, Ron, Et. al.

#i ncl ude <omet pp. h>

cl ass | NEDecode : public cSinpl eModul e

{
public:
Modul e_Cl ass_Menber s(| NEDecode, cSi npl eModul e, 0);
virtual void handl eMessage(cMessage *nsgQ);
};

Def i ne_Mbdul e(| NEDecode) ;

voi d | NEDecode: : handl eMessage(cMessage *nsg)
75

double nsg Il ength = nmsg->length()/8; //Length in bytes

/1 To find the length of the decoded packet, the

/1 20 bytes of IP header and the 20 bytes of security
/'l header are first renoved. The padding is not

/'l renmoved, but the additional 12 bytes of security
/'l header is. For these simnulation the additional

/1l padding in the | P header is not inportant since the

/1 UDP header will still be the original |ength.
nmsg_length = nsg_|l ength-40-12; /1 does not renobve
paddi ng

nsg- >set Lengt h(nsg_l ength*8); //length in bits

send(nsg, "physQut") ;

file: trafficUDPHost. ned

aut hor: Janes Knol

Date: 26 Apr, 2004

UDP application created to sinulate background network
76

traffic. The client Continuously transmts based upon

/1l the data rate specified. The server application handles
/1 incom ng nmessages by recording the desired netrics such
/1l as delay and then deleting the packet. A UDP

/1 application was chosen to simulate network traffic since
/1 it was able to be adjusted to easily provide different
/'l levels of network saturation and because the netrics

/'l were easier to obtain froma single application.
e e T T
i mport

"Li nkLayer",
"Net wor kLayer ",

"trafficUDPUpper Layers";

nmodul e traffi cUDPHost

par anet er s:
dest _addr : string, //list of destination addresses
| ocal _port : nunmeric const, //client port

dest _port : nuneric, //server port

nmsg_length : nuneric, /1 Max length of a nessage
(bits)

start _delay : bool, //delay start of transmt?

traffic rate : nuneric, /lrate traffic to be
gener at ed

77

| ocal _addr : string,

nuntf Ports numeri c, //allows connection to

mul ti pl e nodes

routingFile : string; /[/file nanme of routing file
for this host

gat es:
in: in[];
out: out[];
subnodul es:
udpApp: traffi cUDPUpperLayers;
par anmet er s:
dest addr = dest_addr,
| ocal _port = local port,
dest _port = dest_port,
nmsg_| ength = nmsg_I engt h,
start _delay = start_del ay,
traffic_ rate = traffic_rate,
| ocal _addr = | ocal _addr,

udpd i ent 1Nane = “traffi cUDPC i ent App",
[/ specifies app to use

udpSer ver 1Nane “traffi cUDPServer App"

[/ specifies app to use
di splay: "p=89, 68; b=40, 24, rect";
net wor kLayer: NetworkLayer;

par anet er s:

78

| PForward = O, //this node wll not

forward traffic intended for a different host

nuntf Ports = nunOf Ports,
routingFile = routingFile;

gat esi zes:
physl n[nunOf Por t s],
physQut [numOf Port s] ;

di splay: "p=87, 155;i=fork";

netlf : LinkLayer[nunOf Ports];
par anet ers:

NW Name = "PPPModul e"; [lspecify |ink
| ayer to use

di splay: "p=80, 220, row; i =i face";
connecti ons nocheck:
/1l transport connections
net wor kLayer . UDPQut --> udpApp.from.i p;

net wor kLayer . UDPI n <-- udpApp.to_ip;

/' connections to other nodes
for i=0..nunOf Ports-1 do
in[i] -->netlf[i].physln;
out[i] <-- netlf[i].physCQut;

netlf[i].inputQeueCut -->
net wor kLayer . physin[i];

79

netlf[i].outputQeueln <--

net wor kLayer . physQut[i];
endf or;

endnodul e

[l file: trafficUDPUpperLayers. ned

// aut hor: Janes Knol

/| Date: 26 Apr, 2004

/1 UDP application created to simnulate background network
/'l traffic. The client continuously transmts based upon

/'l the data rate and the server discards the nessages.

i nport " UDPProcessing";

i mport "trafficUDPApp";

nodul e trafficUDPUpper Layers
par anmeters:

dest addr : string, [11ist of destination
addr esses

| ocal _port : numeric const, //client port
dest _port : nuneric, [//server port

80

nsg |l ength : nuneric, /1 Max length of a nessage

(bits)
start _delay : bool, //delay start of transmt
traffic rate : numeric, /lrate traffic is to be
gener at ed
| ocal _addr : string,
udpdientlNanme : string, //client app to use
udpServer 1Nanme : string; [//server app to use
gat es:

in: fromip;
out: to_ip;
subnodul es:
udpPr ocessi ng: UDPProcessi ng;
gat esi zes:
from application[2],
to_application[2];
di splay: "p=94, 105;i=fork";
udpCientl: udpCientlNane |ike trafficUDPApp;
par anmet ers:
dest addr = dest _addr,
| ocal _port = l|local port,
dest _port = dest port,
nmsg_|l ength = nmsg_Il engt h,
start _delay = start_del ay,
traffic rate = traffic_rate,

81

| ocal _addr = | ocal _addr;

di splay: "p=134, 43; b=48, 32, rect";

udpServer 1: udpServer1Nane |ike traffi cUDPApp

par anet er s:

| ocal _port=dest port;

di splay: "p=51, 42; b=40, 24, rect";

connecti ons nocheck:

fromip --> udpProcessing.from.ip;

to ip <-- udpProcessing.to_ip;

udpProcessing.to_application[0]
udpdientl.fromudp;

udpProcessi ng. from applicati on[0]
udpdientl.to_udp;

udpProcessing.to_application[1]
udpServer 1. from udp

udpProcessi ng. from application[1]
udpServerl1l.to_udp

di splay: "p=10, 10; b=157, 140, rect";

endnodul e

[l file: trafficUDPApp. ned

// author: Janes Knol

82

/| Date: 26 Apr, 2004

/1 UDP application created to sinulate background network
/1l traffic. The client continuously transmts based upon

/'l the data rate and the server discards the nmessages.

11
/'l Peer of trafficUDPServerApp. Sends UDP packets to
/1 randomy chosen destinations at random i ntervals.
/1 Destinations are chosen fromthe dest addresses
/'l paraneter
11
sinple trafficUDPC i ent App

par amet er s:

| ocal _port : nuneric const,

dest _port : nuneric const, [/ must match far end

server |ocal port

nmsg_length : nuneric const, /1l Max length of a
nmessage (bits)

start_delay : bool, //delay start of transmt
traffic_rate : nuneric, /[lrate traffic to be
gener at ed

| ocal _addr : string,

83

dest _addr: string; // destination |IP address
gat es:

in: fromudp

out: to_udp;

endsi npl e

11
/'l Peer of trafficUDPClientApp. At the nonent just discards
/'l received packets.
11
sinpl e trafficUDPServer App
par anmet ers:
| ocal _port : nuneric const;
gat es:
in: fromudp
out: to_udp;

endsi npl e

[l file: trafficUDPApp.h

/] author: Janes Knol

[l Date: 26 Apr, 2004

/1 UDP application created to sinulate background network
84

/1l traffic. The client continuously transmts based upon

/!l the data rate and the server discards the nmessages.

#i fndef __ TRAFFI CUDPAPP H

#define _ TRAFFI CUDPAPP H

#i ncl ude <vector>

#i ncl ude <ommet pp. h>

#i ncl ude "basic_consts. h"

#i ncl ude "I PI nterfacePacket. h"

Il
/1 UDP server app.
Il
class trafficUDPServer App : public cSinpl eMdul e
{
pr ot ect ed:
i nt nunRecei ved; /I nunber of nessages received
cQut Vector delay v; [//records del ay

cQut Vect or receive_v;//records aver age nunber
nmessages recei ved per second

publi c:

85

of

Modul e_C ass_Menbers(traffi cUDPServer App,
cSi npl eModul e, 0);

virtual void initialize();

virtual void handl eMessage(cMessage *nsQ);

11
/1 UDP client app.
11
class trafficUDPClient App : public cSinpl eMdul e
{
pr ot ect ed:

enum MsgKi nds /ltypes of nessages

{
TRAFFI C,
VO P_DATA,
DATA COLLECT,
TI MEOQUT _THI NK
}
std::string nodeNane; [lused to determ ne

application to use

whi ch

int local Port, destPort; //nunbers not inportant as

|l ong as | ocal matches renpte dest

int msgLength; //length of each nessage

86

bool startDelay;//delay before starting to transmt?
double trafficRate;//bits per second to send
| PAddr ess | ocal Addr;

std::vector<| PAddress> dest Addr esses; /lability to
randomy send to diff addrs

doubl e neglinterval; //tinme between nessages

i nt nunBent; //nunber of nessages sent

cQut Vect or send_v; /I average nunber of nsgs sent per

second

// chooses random desti nati on address

| PAddr ess chooseDest Addr () ;

publi c:

Modul e_Cl ass_Menbers(traffi cUDPC i ent App,
cSi npl eModul e, 0);

virtual void initialize();

virtual void handl eMessage(cMessage *nsgQ);

#endi f

/1 file: traffi cUDPApp.cc

// aut hor: Janes Knol

/| Date: 26 Apr, 2004

/1 UDP application created to simulate background network
/1l traffic. The client continuously transmts based upon

/'l the data rate and the server discards the nmessages.

#i ncl ude <ommet pp. h>
#i nclude "traffi cUDPApp. h"
#i ncl ude "UDPI nt erf acePacket _m h"

#i nclude "StringTokeni zer. h"

Def i ne_Mbdul e(traffi cUDPServer App) ;

void trafficUDPServerApp::initialize()

{

nunRecei ved = 0; //nunber of nessages received

WATCH(nunRecei ved) ;

del ay_v. set Nane("delay_tinme"); /1 delay between when

nessage sent and received

88

recei ve_v.set Name("receive rate"); /1 nmsg recei ved

di vi ded by el apsed si ni e

}

/| Recei ve message, record netrics, and discard

voi d trafficUDPServer App: : handl eMessage(cMessage *nsQ)
{

/'l cast msg as UDP Interface Packet and retrieve payl oad

UDPI nt er f acePacket *udpl f Packet =
check_and_cast <UDPI nt er f acePacket *>(nsg);

cMessage *payl oad = udpl f Packet - >decapsul ate();

/1 get specifics about nessage and print

| PAddr ess src = udpl f Packet - >get SrcAddr () ;

| PAddr ess dest = udpl f Packet - >get Dest Addr () ;
int sentPort = udplfPacket->getSrcPort();
int recPort = udplfPacket->getDestPort();
sintinme_t sent = payl oad->creationTinme();

siminme_t arrive = udplfPacket->arrival Time();

ev << "Packet received: " << payload << endl;

ev << "Payload length: " << (payload->length()/8) << "
bytes" << endl;

89

ev << "Srecf/Port: " << src << " | " << sentPort << "

ev << "Dest/Port: " << dest << " |/ " << recPort <<
endl ;

ev << "Sent/Arrive: " << sent << " [" << arrive <<
endl ;

/lrecord del ay and average nunber received

del ay_v.record(si mlime()-sent);

nunRecei ved++;

receive_v.record(nunRecei ved/ si nili me());

/1 discard nsg

del et e udpl f Packet ;

del et e payl oad;
}
/ / s ————————————

Defi ne_Mdul e(traffi cUDPC i ent App) ;

void trafficUDPClientApp::initialize()

{

send_v. set Nane("send rate"); //set name of vector

90

/]l get paraneters

| ocal Port = par("local port");

dest Port = par("dest _port");

nsgLength = par("nmsg_| ength");

startDelay = par("start_del ay");

trafficRate = par("traffic_rate");

const char *|ocal Address = par ("l ocal _addr");

| ocal Addr =l PAddress(| ocal Address);

/| parse destination addresses

const char *dest Addrs = par("dest_addr");
StringTokeni zer tokeni zer(dest Addrs);

const char *token;

while ((token = tokenizer. next Token())!=NULL)

dest Addr esses. push_back(| PAddr ess(t oken));

nmsgl nterval = (msgLength/trafficRate);//how fast do we
send nessages

[/linitialize

nunSent = O;
WATCH(nuntent) ;
cMessage *timer = new cMessage("sendTinmer"); [//self

message for next transmit

91

/'l schedul e first nessage
if (startDel ay)

schedul eAt (nmsgl nt erval +dbl rand(), tiner);
el se

schedul eAt (dbl rand(), tinmer);

/I handl e i ncom ng nsgs

voi d trafficUDPC i ent App: : handl eMessage(cMessage *nsQ)
{

schedul eAt (si mTi me() +nsgl nterval, nsg); //schedul e next

message

char nsgNane[32] ;

sprintf(nmsgNane, "udpAppDat a- %d", nunfSent);

/'l create payl oad
cMessage *payl oad = new cMessage(nsgNane) ;

payl oad- >set Lengt h(msgLengt h) ;

/I header information to be passed on

92

UDPI nt er f acePacket *udpl f Packet
UDPI nt er f acePacket () ;

new

udpl f Packet - >encapsul at e(payl oad) ;

| PAddr ess dest Addr = chooseDest Addr () ;
| PAddress | ocAddr = | ocal Addr;

udpl f Packet - >set Sr cAddr (| ocAddr) ;

udpl f Packet - >set Dest Addr (dest Addr) ;
udpl f Packet - >set SrcPort (| ocal Port);

udpl f Packet - >set Dest Port (dest Port);

[lprint header info to user interface
ev << "Packet sent: " << payload << endl;

ev << "Payload length: " << (payload->length()/8) << "
bytes" << endl;

ev << "Src/Port: " << locAddr << " [/ " << |local Port <<

endl ;

ev << "Dest/Port: " << destAddr << " / " << destPort <<

endl ;

send(udpl f Packet, "to _udp"); //send nsg

//record average nunber of nessages sent

nunSent ++;

send_v. record(nunSent/simrline());

93

/lrandomy choose a destination

| PAddress trafficUDPC i ent App: : chooseDest Addr ()

{

int k = intrand(dest Addresses. si ze());

return dest Addresses| k] ;

file: voi pUDPHost . ned

aut hor: Janes Knol

Date: 13 Apr, 2004

This is a UDP application to send a burst of
conversation to the specified address, and then wait for
a reply. A conversation should be started by only one
node and the delay before replying nust be |onger than
the delay or the nodes will step on each other. Cal
cycle is acconplished by setting a tinmer within both
nodes to start and stop conversations at a predeterm ned
interval. If randomintervals are used, the sane val ue
shoul d be passed to both nodes in the conversation since

there is not any synchroni zati on mechani smin pl ace.
94

i nport
"Li nkLayer",
" Net wor kLayer ",

"voi pUDPUpper Layer s"

nodul e voi pUDPHost
par anmet ers:
| ocal _addr : string,
dest _addr: string, [// Destination |IP address

| ocal _port : nuneric const,

dest _port : nuneric const, [/ must match far end
| ocal port
voice_length : numeric const, /llength of a voice

conversati on segnent

initiate : bool, //delay start of transmt on

recei ving end

codec_rate : nuneric const, /lanalog to digital

conver si on encodi ng

reply_delay :numeric const, //Tine to pause before
a response begins

frame_size :numeric const, //length of a frame
tal k_cycle:nunmeric, [//percent of off hook tine

call length: nurmeric, //length of a cal

95

init_delay: nuneric; /lamount to delay before the

first conversation

nuncf Ports : numeric const, //allows connection to

mul ti pl e nodes
routingFile : string; /routing file to use
gat es:
in: in[];
out: out[];
subnodul es:
udpApp: voi pUDPUpper Layers;
par anmet ers:
| ocal _addr = | ocal _addr,
dest addr = dest_addr,
| ocal _port = local port,
dest _port = dest_port,
voi ce_l ength = voice_l engt h,
initiate = initiate,
codec_rate = codec_rate,
reply delay = reply_del ay,
talk_cycle = tal k_cycle,

call _length = call _| ength,

i nit_del ay i nit_del ay,

frame_size = frame_si ze,

udpd i ent 1Nane = "voi pUDPC i ent App";
/lclient app to use

96

di splay: "p=89, 68; b=40, 24, rect";
net wor kLayer: NetworklLayer;
par anmet ers:
| PForward = O, / I node does not forward
nunmof Ports = nunOf Ports,

routingFile = routingFile; [lrouting file
to use

gat esi zes:
physl n[nunOf Port s],
physQut [numOf Port s];
di splay: "p=87, 155;i=fork";
netlf : LinkLayer[nunOf Ports];
par anmet ers:
NW Narme = "PPPModul e"; //link layer to use
di spl ay: "p=80, 220, row; i =i f ace";
connecti ons nocheck:
/1l transport connections
net wor kLayer . UDPQut --> udpApp.from.i p;

net wor kLayer. UDPI n <-- udpApp.to_ip;

// connections to other nodes
for 1=0..nunO>fPorts-1 do
in[i] -->netlf[i].physln;

out[i] <-- netlf[i].physQut;

97

netlf[i].inputQeueCut -->
net wor kLayer . physlin[i];

netlf[i].outputQeueln <--

net wor kLayer . physQut[i];
endf or;

endnodul e

/1l file: voi pUDPUpper Layers. ned

// author: Janes Knol

/] Date: 13 Apr, 2004

/1 This is a UDP application to send a burst of
/'l conversation to the specified address, and then wait for

/'l areply.

i nport " UDPProcessi ng";

i nport "voi pUDPApp"

nodul e voi pUDPUpper Layer s
par anmet ers:
| ocal _addr : string, //local |P address
dest _addr: string, [// Destination |P address

98

| ocal _port : numeric const,

dest _port : numeric const, /[l must match far end
| ocal port
voice length : nuneric const, /llength of a voice

conversation segnent

initiate : bool, /ldelay start of transmt on

recei ving end

codec_rate : nuneric const, /lanalog to digital

conver si on encodi ng

reply _delay :numeric const, //Tine to pause before

a response begins
frame_size :numeric const, //length of a frame
tal k_cycle:nuneric, //percent of off hook tine
call _length: nuneric, //length of a cal

init_delay: nuneric; /lamount to delay before the

first conversation
udpCdientlName : string; //client to use
gat es:
in: from.lip;
out: to_ip;
subnodul es:
udpPr ocessi ng: UDPProcessi ng;
gat esi zes:
fromapplication[1],
to_application[1];
di splay: "p=94, 105;i =fork";
99

udpdientl: udpCientlNane |ike voi pUDPApp
par anmet ers:
| ocal _addr = | ocal _addr,
dest addr = dest _addr,
| ocal _port = |l ocal port,
dest _port = dest _port,
voi ce_|l ength = voice_l engt h,
initiate = initiate,
codec_rate = codec_rate,
reply _delay = reply_del ay,

frame_size = frame_si ze,

tal k_cycle tal k_cycl e,
call _length = call _| ength,
init_delay = init_del ay;
di splay: "p=134, 43; b=48, 32, rect";
connecti ons nocheck:

fromip --> udpProcessing.from.ip;

to ip <-- udpProcessing.to_ip;

udpProcessi ng. to_application| 0]
udpdientl. from udp;

udpProcessi ng. from appl i cati on[0]
udplientl.to _udp;

di splay: "p=10, 10; b=157, 140, rect";

100

endnodul e

/1 file: voi pUDPApp. ned

// author: Janes Knol

/| Date: 13 Apr, 2004

/1 This is a UDP application to send a burst of
/'l conversation to the specified address, and then wait for

/'l areply.

si npl e voi pUDPC i ent App
par anmet er s:
| ocal _addr : string, //local |IP address
dest _addr: string, [// Destination |IP address

| ocal _port : nunmeric const, //local port nunber

dest _port : nuneric const, [/ must match far end
| ocal port
voice_length : nunmeric const, /llength of a voice

conversati on segnent

initiate : bool, //delay start of transmt on

recei ving end

101

codec_rate : nuneric const, /lanalog to digital

conver si on encodi ng

reply _delay :numeric const, //Tine to pause before

a response begins
frame_size :numeric const, //length of a frame
tal k_cycle:nunmeric, //percent of off hook tine
call _length: nuneric, //length of a cal

init_delay: nuneric; /lamount to delay before the

first conversation
gat es:
in: fromudp
out: to_udp;

endsi npl e

Il file: voi pUDPApp. h

[/ author: Janes Knol

[/ Date: 13 Apr, 2004

[l This is a UDP application to send a burst of

/1 conversation to the specified address, and then wait for

Il a reply.

102

#i f ndef __ VO PUDPAPP_H

#define __ VO PUDPAPP_H

#i ncl ude <vect or>

#i ncl ude <ommet pp. h>

#i ncl ude "basic_consts. h"

#i ncl ude "1 Pl nt er f acePacket. h"

cl ass voi pUDPCl i ent App : public cSinpl eModul e
{

pr ot ect ed:

enum MsgKi nds //types of nsgs

{
TRAFFI C,
VO P_DATA,
DATA COLLECT,
TI MEOUT_THI NK,
TI MEOUT_CALL
1

int |localPort, destPort; //dest port nust nmatch renote
| ocal

| PAddr ess | ocal Addr ;

| PAddr ess dest Addr ;
103

doubl e voi celLengt h;

seconds
bool initiate;
doubl e codecRat e;
doubl e repl yDel ay;
doubl e franesSi ze;

doubl e tal kCycl e;

/1length of voice transmi ssion in

//initiate conversation?

/'l encoding rate

// del ay before beginning to speak
/llength of a franme in seconds

[/ off hook to on hook ratio

siminme_t calllLength;//length of a cal

siminme_t initDelay;

conversation

/[/time to delay before beginning

int burstCount; //nunber of nsgs left to send

i nt burstNunber; //nunber of nsgs in a burst

int burstSize; /lsize of each nsg payl oad

[ljitter calculation

doubl e del ay;
doubl e ol d_del ay;

double jitter;

[/current state
bool talk;
bool 1isten;

bool call _estab;

104

/lself nmegs
cMessage *ti neout _t hink;
cMessage *tineout call;

cMessage *voi p_dat a;

/lmetrics

i nt nunBent ;

i nt nunRecei ved;
sintine_t |astRec;
sintine_t |astSend;
cQut Vect or send_v;

cQut Vect or del ay_v;
cQut Vect or receive_v;
cQut Vector inst_send_v;
cQut Vector inst_rec_v;

cQut Vector jitter_v;

/I handl es creating and sendi ng a nsg

virtual void sendMessage();

public:

Modul e_C ass_Menber s(voi pUDPC i ent App, cSi npl eModul e,
0);

virtual void initialize();
105

virtual void handl eMessage(cMessage *nsQ);

#endi f

[l file: voi pUDPApp. cc

// author: Janes Knol

/| Date: 13 Apr, 2004

/1 This is a UDP application to send a burst of
/'l conversation to the specified address, and then wait for

/'l areply.

#i ncl ude <ommet pp. h>
#i ncl ude "voi pUDPApp. h"
#i ncl ude "UDPI nt er f acePacket _m h"

#i ncl ude "StringTokeni zer. h"

Def i ne_Mbdul e(voi pUDPC i ent App) ;

void voi pUDPCl i ent App::initialize()

{
106

/lset vector nanmes

send_v. set Name("send_rate");
receive_v.setName("receive rate");

i nst_send_v.set Name("inst_send rate");
inst_rec_v.setNane("inst_rec_rate");
jitter_v.setName("jitter");

del ay_v. set Nanme("del ay_tine");

[linitialize

ol d_delay = 0;

jitter = 0;

delay = 0O;

| ast Rec = simrlinme();
| ast Send = sinli nme();
call estab = fal se;
nunSent = 0;

nunRecei ved = O;

[/ read paraneters
| ocal Port = par("local _port");

destPort = par("dest _port");

voi ceLength = par("voice_|length"); //length of voice
transm ssion in seconds

107

initiate = par("initiate"); //does this host initiate

conversation

codecRate = par("codec _rate"); [//kbps of codec

replyDelay = par("reply_del ay"); //delay before
begi nni ng to speak

frameSi ze = par("frane_size"); /l/length of a frame in
seconds

tal kCycle = par("tal k_cycle"); /1 off hook to on hook
ratio

call Length = par("call _length"); //length of a cal

initDelay = par("init_delay"); //time to delay before
begi nni ng conversation

[/ convert address strings to |PAddress
const char *local Address = par ("l ocal _addr");

| ocal Addr =l PAddress(| ocal Address);

const char *dest Address = par("dest_addr");

dest Addr =l PAddr ess(dest Addr ess);

bur st Nunber = ceil (voi ceLength/franeSi ze) ; [I nunber of
nmsgs in a burst

burstSize = (frameSize*codecRate)+(12*8); /1lsize of
nsg with RTP header

108

//timeout neg creation

ti meout _think = new
cMessage(" TI MEQUT_THI NK", TI MEOQUT_THI NK) ; I1if tinmer
expires before next voice packet received, node will begin

transmtting

ti meout call = new
cMessage(" Tl MEQUT_CALL", TI MEQUT_CALL); //timer to tell when

to go on and off hook

voi p_data = new cMessage("VO P_DATA", VO P_DATA) ;

/ / schedul es next send

schedul eAt (si mTi me() +i ni t Del ay, ti meout _call);
[/ schedule first transm ssion

}

voi d voi pUDPC i ent App: : handl eMessage(cMessage *nsg)
{

[1if meg is fromrenote destination
if (('(nmsg->isSel fMessage())))

{

ev<<"Recei ved a nessage fromrenote dest \n";

if (listen) //in listen, reschedule think tiner to

begin transmtting

{

109

i f (timeout think->isSchedul ed())

{

cancel Event (ti nmeout _t hi nk);

}
schedul eAt (si mTi me() +r epl yDel ay,

ti meout _t hink);
}
else if (!'talk) //enter listen and schedul e del ay
{
i sten=true;

schedul eAt (si mTi me() +r epl yDel ay,
ti meout _t hi nk);

ev<< "Receiving conversation. Enter listen

nmode. \n";

}

/I get payl oad

UDPI nt er f acePacket *udpl f Packet =
check_and_cast <UDPI nt er f acePacket *>(nsg);

cMessage *payl oad = udpl f Packet - >decapsul ate();

/I parse and print
| PAddr ess src = udpl f Packet - >get SrcAddr () ;
| PAddr ess dest = udpl f Packet - >get Dest Addr () ;

int sentPort = udplfPacket->getSrcPort();

110

int recPort = udplfPacket->get DestPort();
simine_t sent = payl oad->creationTi ne();

sintime_t arrive = udplfPacket->arrival Ti ne();

ev << "Packet received: " << payload << endl;

ev << "Payload length: " << (payl oad->length()/8)

<< " bytes" << endl;

ev << "Src/Port: " << src << " [/ " << sentPort << "

ev << "Dest/Port: " << dest << " [/ " << recPort <<
endl ;

ev << "Sent/Arrive: " << sent << " [/ " << arrive <<
endl ;

//record netrics

del ay= arrive-sent;

del ay_v.record(del ay);

nunmRecei ved++;

recei ve_v.record(nunRecei ved/ si nmlinme());

inst_rec_v.record(payl oad->l ength()/ (simlime()-
| ast Rec)) ;

| ast Rec = simrlinme();

jitter = jitter+(abs(ol d_del ay-delay)-jitter)/16;
111

ol d_del ay = del ay;

jitter _v.record(jitter);

/lclean up
del et e udpl f Packet ;

del et e payl oad;

}
/lif message is to transmt a voip nsg
el se i f ((meg->ki nd() ==VA P_DATA)
>i sSel f Message())
{
i f (burst Count >0)
{
sendMessage() ;
}
el se

error("No nessage to send");
reach here

}

/[lif meg is to start sending
else if ((nmeg->kind() == TI MEOQUT_THI NK))
{

bur st Count = bur st Nunber ;

t al k=t rue;

112

//shoul d

neg-

not

i sten=fal se;

if (call _estab)
sendMessage() ;
}
[1if meg is for call cycle
else if ((nmsg->kind() == TI MEOUT_CALL))
{
if ('call _estab) //start cal
{
ev<<"Begin call \n";
call estab = true;

if (initiate) //does this node initiate the

conversation?

{

if (tinmeout _think->isScheduled())//left over
ti meout

cancel Event (ti meout _t hi nk);

schedul eAt (si mli ne() +f raneSi ze,
timeout _think); //schedule first send

tal k=true;
| i sten=fal se;

}

schedul eAt (si mli ne() +cal | Lengt h, ti meout _call);

//schedule tine to term nate cal

113

}

el se //end cal

{
call _estab = fal se;
i f (timeout_think->i sSchedul ed())
cancel Event (ti nmeout _t hi nk);
i f (voi p_data->i sSchedul ed())
cancel Event (voi p_dat a) ;
t al k=f al se;
l'i sten=fal se;
schedul eAt (si nili me() + ((cal I Lengt h/tal kCycl e*
100)- callLength), timeout_call); /I schedul e tinme of next
cal |
}
}
el se
{

error("Could not determne origin of nessage(%l)
(forgot to add timeout?)\n",nsg->kind()); //should not get
here

}

/'l create and send mnsg

voi d voi pUDPC i ent App: : sendMessage()

114

char nsgNane[32] ;

sprintf(nmsgNane, "udpAppDat a- %d", nuntent) ;

/'l create payl oad
cMessage *payl oad = new cMessage(nsgNane, VO P_DATA);
payl oad- >set Lengt h(bur st Si ze) ;

payl oad- >set Priority(46);

/I header info for next |ayer

UDPI nt er f acePacket *udpl f Packet
nt er f acePacket () ;

new

UDP

udpl f Packet - >encapsul at e(payl oad) ;
udpl f Packet - >set Sr cAddr (| ocal Addr) ;
udpl f Packet - >set Dest Addr (dest Addr) ;
udpl f Packet - >set SrcPort (| ocal Port);
udpl f Packet - >set Dest Port (dest Port);

udpl f Packet - >set CodePoi nt (46) ;

[lprint info about packet
ev << "Packet sent: " << payload << endl;

ev << "Payload length: " << (payload->length()/8) << "
bytes" << endl;

ev << "Src/Port: " << localAddr << " | " << |ocal Port

<< n n o,

115

ev << "Dest/Port: " << destAddr << " / " << destPort <<

endl ;

send(udpl f Packet, "to_udp"); //send the nessage

/ I aver age numnber sent
nunBent ++;

send_v.record(nunSent/simline());

/| packet by packet send rate in bits

i nst_send_v. record(payl oad->l ength()/ (si nli me() -
| ast Send)) ;

| ast Send = sinli nme();

/'l schedul e next sending

i f (burstCount>1)

{
schedul eAt (si nili me() +franmeSi ze, voi p_data);
burst Count--; //keep track of nunmber left to send
}
else //done talking, wait for reply
{
t al k=f al se;
}

116

/1 file: wedbox.ned

/] author: Janmes Knoll
11

/| Date: 24 May, 2004
11

/[l Application to prioritize VolP nsgs and nonitor

t hr oughput . A conbination of CBWQ and WRED but not a
conpl ete inplenentation. This is provided as a separate
node, but could be integrated into a router. The current

i npl ementation only recognizes high and low priority
traffic based upon whether or not a DSCP of 46 is present
in the TOS field. Throughput is calculated and recorded
for each queue. The pass in and out gates provide a path
wi t hout

si npl e wr edApp

par anet ers:

bw_max: nuneric, [/ maxi mum bandwi dth to allocate
to HPQ

W n: numeri c, [1time span for bandw dt h

cal cul ati ons

hpg_m n_thresh: nuneric, /[l m ni nrum queue size

bef ore inpl ementi ng WRED

117

hpg_max_t hresh: nuneri c, [/ maxi num queue size

bef ore i npl ementi ng WRED

hpg_npd: nurneric, /I maxi nrum percentage of packets

to drop

| pg_m n_thresh: nuneric, [/ m ni mum queue size

before inpl ementi ng WRED

| pg_mex_t hresh: nuneric, [/ maxi mum queue size

before inpl ementi ng WRED

| pg_npd: nurneric, /I maxi mum percentage of packets

to drop

max_g_l en: nuneric, /I max queue size before tai

drop

n: nuneric; [//weight factor

gat es:
in: gln;
out: qQut;
endsi npl e

modul e wr edBox
par anet er s:

bw_max: nuneric, [/ maxi mum bandwi dth to allocate
to HPQ

Wi n: numeri c; [1time span for bandw dt h

cal cul ati ons

gat es:

118

i n: passln;

out: passQut;

in: gln;

out: qQut;
subnodul es:

wr edap: wr edApp;

par anmet ers:
bw max = bw_nmax,

WwWn =wn;

di splay: "p=160, 60;i=fork";

netlfl : LinkLayer;
par anmet ers:
NW Narme = " PPPMbdul e”;
di splay: "p=80, 120;i =i face";
netlf2 : LinkLayer;
par anmet ers:
NW Narme = " PPPMbdul e";

di splay: "p=160, 120;i =i face";

connecti ons:

passln --> netlf2. physln;

passQut <-- netlf2. physQut;
119

net | f 2. i nput QueueCut --> net | f 2. out put Queuel n;
/I pass through

gln --> netlfl. physln;

gQut <-- netlfl. physQut;
net|fl.inputQeueQut --> w edap.qln;
net | f 1. out put Queuel n <-- w edap. qQut;

endnodul e

/1 file: wedbox.h

[/ author: Janmes Knol
11

/| Date: 24 May, 2004
11

/[l Application to prioritize VolP nsgs and nonitor
t hr oughput . A conbination of CBWQ and WRED but not a
conpl ete inplenentation. Provi ded as a separate node, but
could be integrated into a router.

#i fndef _ WREDBOX H

#define _ WREDBOX H

#i ncl ude <vect or>

#i ncl ude <ommet pp. h>

120

cl ass wedApp : public cSinpl eModul e

{
pr ot ect ed:
doubl e bwivax; [/ maxi mum bandwi dth to allocate to
HPQ
double win; //time span for bandw dth cal cul ati ons
cQueue hpq; /1high priority queue
cQueue | pq; /[llow priority queue
cMessage *next_send; //self timng nessage
doubl e hpg_bits; //length of all nsgs in hpqg
double I pg_bits; //length of all nmsgs in |pq
cQueue hpg_bw q; //stores nmsgs for bw calcs
cQueue I pg_bw qg; //stores nmsgs for bw calcs
simime_t old tine; //oldest tinme to include in bw
cal c

int hpg_m n_thresh; [/ mnimum queue size before
i npl enmenti ng WRED

i nt hpg_max_t hresh; [/ maxi mum queue size before
i npl enenti ng WRED

i nt hpg_npd; [/ maxi mum per cent age of

packets to drop
121

int | pg_mn_thresh;
i npl enenti ng WRED

int | pg_max_thresh;

i npl enenti ng WRED

int | pg_npd;
packets to drop

int max_g_Il en;

drop
doubl e hpg_avg_q_I en;
doubl e I pg_avg_q_I| en;

doubl e n;

cQut Vect or hpqsi ze_v;
cQut Vector | pgsi ze_v;
cQut Vect or hpbw_v;

cQut Vect or | pbw_v;

voi d sendMessage();

voi d servi ceQueues();

[/ m nimum queue size before

[/ maxi num queue size before

/I maxi mum per cent age of

/[l max queue size before tail

/| average | ength of queue
/| average | ength of queue

/I wei ght factor

Il

double bw(); //calcul ate bandw dth used

bool drop(int mn_thresh, int max_thresh, int npd,

double avg q len); //determne if drop

publi c:

Modul e_Cl ass_Menber s(w edApp, cSinpl eModul e, 0);

virtual void initialize();
122

virtual void handl eMessage(cMessage *nsQ);

#endi f

/1 file: wedbox.cc
/] author: Janes Knol
11

/| Date: 24 May, 2004
11

/[l Application to prioritize VolP nsgs and nonitor
t hr oughput . A conbination of CBWQ and WRED but not a
conpl ete inplenentation. Provi ded as a separate node, but
could be integrated into a router.

#i ncl ude <omet pp. h>
#i ncl ude <mat h. h>
#1 ncl ude "w edbox. h"

#i ncl ude "I PDat agram h"

Def i ne_Mbdul e(wr edApp) ;

void wedApp::initialize()

123

/| paranet ers
bwMvax = par ("bw _max");

win = par("wn");

hpg_m n_t hresh par ("hpg_m n_t hresh");

hpg_max_t hresh par ("hpg_nmax_t hresh");

hpg_npd = par (" hpg_npd");

| pg_m n_t hresh par ("l pg_mn_thresh");

| pg_max_t hresh par ("l pg_max_t hresh");
I pg_npd = par ("l pg_npd");
max_g_len = par("max_q_len");

n = par("n");

//set vector nanes

hpgsi ze_v. set Name(" HPQ_si ze") ;
| pgsi ze_v. set Name(" LPQ_si ze") ;
hpbw_v. set Nane("HP_BW) ;

| pbw v. set Nane("LP_BW);

[/linitialize

I
o

hpg_bits

I
o

| pg_bits

I
o

hpg_avg_g_l en

I
o

| pg_avg_g_l en
124

//timng nmessage for servicing the queues

next _send = new cMessage(" NEXT_SEND") ;

voi d w edApp: : handl eMessage(cMessage *nsg)

{
[lif timer, service queues
if (msg->isSel f Message())
servi ceQueues();
I[1if new nsg
el se
{
| PDat agram *i pDatagram = check_and_cast <l PDat agr am
*>(meg) ;

[1if high pri nmsg, insert in hpq
if (ipDatagram >diffServCodePoint() == 46)

{

hpg_avg_g_len = (hpg_avg_ g len * (1-pow.5,n)))
+ (hpqg.length() * pow .5,n)); [/wed algorithm for
wei ghting the queue length to danp out transient effects

//do | drop this nsg?

125

i f ((hpg. I ength() >= max_g_I| en) []
drop(hpg_m n_t hresh, hpg_max_t hresh, hpg_npd,
hpg_avg_qg_l en))

{
del ete (i pDatagram; //dropped

ev<<"Drop from HPQ n";

}
el se
{
hpg. i nsert (i pDat agran ; /lstore in t he
queue
}
}
/[1if low pri meg, insert in |pq
el se
{

Ipg_avg g len = (lpg_avg qlen * (1-powm.5,n))) +
(I'pg.length() * powm.5,n)); //wed algorithm for weighting
the queue length to danp out transient effects

//do | drop this nsg?

i f ((I'pg.length() >= max_q_I| en) []
drop(l pg_m n_t hresh, | pg_max_t hresh, | pg_npd,
| pg_avg_qg_l en))

{

126

del ete (ipDatagram; //dropped

ev<<"Drop from LPQ n";

el se

| pg.insert(ipbDatagranm); //insert into queue

/I schedul e next service of queues
i f (!next_send->i sSchedul ed())
i f (parent Modul e()->gate("qQut")->isBusy())

schedul eAt (par ent Modul e() - >gate("qQut") -

>t ransm ssi onFi ni shes(), next_send);
el se

schedul eAt (si nili me(), next_send);

voi d wr edApp: : servi ceQueues()

{
doubl e bw var = bw(); //determ ne bw used by hpq

/'l service hpg if not over bw allocation

i f (bw_var<bwVax && ! hpqg. enmpty())
127

/linsert in bw cal c queue

cMessage *bw_nsg = (cMessage *)((cMessage
*)hpa. tail())->dup();
bw _nsg- >set Ti mest anp(si nili me()) ; //set tinmestanp

needed for bw cal cs

hpg_bits = hpg_bits+bw msg->length(); //add to

| ength of nmegs in bw queue

hpg_bw_q.insert(bw nsg); //store for future calcs

send((cMessage *) hpg. pop(), "qQut"); //send nsg

hpgsi ze_v.record(hpg. l ength());//record queue size

// schedul e next send

if (!next_send->i sScheduled() && (!hpg.empty() ||
'l'pg. enpty()))
i f (parent Modul e()->gate("qQut")->i sBusy())

schedul eAt (par ent Modul e() - >gate("qQut") -

>t ransm ssi onFi ni shes(), next_send);
el se
schedul eAt (si nli me(), next_send);
}
/lservice |pq
else if (!lpg.enmpty())

{
128

/linsert in bw cal c queue

cMessage *bw_nsg = (cMessage *)((cMessage
*)Ipa.tail())->dup();
bw nsg- >set Ti nest anp(si nTi me()) ; //set timestanp

needed for bw cal cs

| pg_bits = 1pqg_bits+bw nmsg->l ength(); //add to

| ength of nmegs in bw queue

| pg_bw_q.insert(bw nsg); //store for future calcs

send((cMessage *) | pqg.pop(), "qQut"); //send nsg

| pgsi ze_v.record(l pg.length());//record queue size

/ / schedul e next send
if (!next_send->i sScheduled() && (!hpg.empty() ||
'l pg. enpty()))
i f (parent Modul e()->gate("qQut")->isBusy())

schedul eAt (par ent Modul e() - >gate("qQut") -

>t ransm ssi onFi ni shes(), next_send);
el se
schedul eAt (si ni me(), next_send);

}

else if (!'hpg.enpty()) [//service anyway so that bw not
wast ed

{

/linsert in bw cal c queue

129

cMessage *bw_nsg = (cMessage *)((cMessage
*)hpa. tail ())->dup();

bw nsg- >set Ti mest anp(si mlinme());//set ti mestanp

needed for bw cal cs

hpg_bits = hpqg_bits+bw nmsg->l ength(); //add to

| ength of nmegs in bw queue

hpg_bw_q.insert(bw nsg); //store for future calcs

send((cMessage *) hpqg.pop(), "qQut"); //send nsg

hpgsi ze_v.record(hpg.length()); //record queue size

// schedul e next send

if (!next_send->i sScheduled() && (!hpg.empty() ||
'l'pg. enpty()))
i f (parent Modul e()->gate("qQut")->isBusy())

schedul eAt (par ent Modul e() - >gate("qQut") -

>t ransm ssi onFi ni shes(), next_send);
el se

schedul eAt (si nili me(), next_send);

doubl e wredApp: : bw()
{

doubl e bw var;
130

old time = sinmline()-win;//oldest tine to include

bool done = fal se;
//renove nessages ol der than the w ndow
while (!l pg_bw q.empty() && !done)

{
if (((cMessage *)l pg_bw g.tail ())->tinmestanp()>=

old_ tine)
done = true; //done purgi ng nessages
el se

{

| pg_bits = | pg_bits - ((cMessage
*)Ipg_bw g.tail ())->length(); //reduce bits counted

del ete | pg_bw q. pop(); //del ete nessage

//calc and record bw
if (Ipg_bits > 0)
bw var = | pg_bits/ (simlime()-(((cMessage
*)lpg_ bw g.tail())->tinmestanp()));
el se
bw var = 0;

| pbw v.record(bw var);

131

done = fal se;
// renove nessages ol der than the w ndow
while (!hpg_bw q.empty() && !done)

{
i f (((cMessage *Yhpg_bw g.tail ())->tinmestanp()>=

old tine)
done = true; //done purgi ng nmessages
el se
{

hpg_bits = hpg_bits - ((cMessage
*)Yhpg_bw g.tail ())->length(); //reduce bits in queue

del ete hpg_bw q. pop(); //delete nsg

//calc and record bw
if (hpg_bits > 0)

bw var = hpg_bits/ (simlime()-(((cMessage
*)hpg_bw g.tail ())->tinmestanp()));
el se
bw var = 0;

hpbw_v. record(bw_var);

return bw var;//hpqg bw usage

132

/ / det ermi ne random drop based on WRED

bool wredApp::drop(int mn_thresh, int max_thresh, int npd,

doubl e avg _g_I| en)

{

bool drop_val;

i f (avg_q len > mn_thresh)//only drop if over

m n_thresh for queue |ength

{

doubl e drop_prob;

drop_prob = ((avg_g_len - mn_thresh) / (max_thresh
- mn_thresh)) [/ npd; [l probability that an individual
message will be dropped

if (drop_prob >= dblrand()) //randomy determne if

we drop
drop_val = true;
el se
drop_val = fal se;
}
el se
drop_val = false;

133

return (drop_val);

filenanme: nodel 1.irt
routing table for node 1

aut hor: Janes Knol

i fconfig:

ethernet card O to client 2

name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t : 10.0.1.0 255. 255. 255. 0
pppO

r out eend.

filenane: nodel 2.irt
134

10.0.0.1

routing table for node 2

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU:. 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255. 255. 0
ppp0

r out eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: nodel_3.irt
routing table for node 3

aut hor: Janes Knol

i fconfig:
135

10.0.0.2

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0
pPpp0

r out eend.

filenanme: nodel 4.irt
routing table for node 4

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Poi nt-to-Point i net _addr:

MIU: 1500 Metric: 1

136

10.0.0.3

10.0.0.4

i fconfi gend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
pPpp0

r out eend.

filenanme: nodel 5.irt
routing table for node 5

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point i net_addr: 10.0.0.5

MIU: 1500 Metric: 1

i fconfigend.

rout e:
137

defaul t: 10.0.1.0 255. 255.255.0

pPppO

r out eend.

filenanme: nodel 6.irt

routing table for node 6

aut hor: Janes Knol

ifconfig:

ethernet card O to client 2

name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfi gend.

route:

defaul t: 10.0.1.0 255. 255. 255. 0
pPppo

rout eend.

138

10.0.0.6

filenane: nodel 7.irt
routing table for node 7

aut hor: Janes Knol

i fconfig:

ethernet card O to client 2
name: ppp0 encap: Poi nt-to-Point i net_addr: 10.0.0.7

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t : 10.0.1.0 255. 255. 255. 0 G
pppO

r out eend.

filenane: nodel 8.irt

routing table for node 8
139

aut hor: Janes Knol

i fconfig:

ethernet card O to client 2

name: ppp0 encap: Point-to-Point i net _addr:

MIU:. 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255. 255. 0
ppp0

r out eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: nodel 9.irt
routing table for node 9

aut hor: Janes Knol

i fconfig:
140

10.0.0.8

ethernet card O to client 2
name: ppp0 encap: Point-to-Point i net_addr: 10.0.0.9

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
ppp0

r out eend.

filenanme: nodel 10.irt
routing table for node 10

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.10

MIU: 1500 Metric: 1
141

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0

pPppO

r out eend.

filenanme: nodel 11.irt
routing table for node 11

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point

MIU: 1500 Metric: 1

i fconfigend.

142

i net _addr:

10.0.0.11

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
ppp0

r out eend.

filenanme: nodel 12.irt
routing table for node 12

aut hor: Janes Knol

ifconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.12

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t : 10.0.1.0 255. 255. 255. 0 G
pppO

143

r out eend.

filenanme: nodel 13.irt

routing table for node 13

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t: 10.0.1.0
ppp0

r out eend.

filenanme: nodel 14.irt

255.255.255.0

144

10.0.0. 13

routing table for node 14

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU:. 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255. 255. 0
ppp0

rout eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: nodel_15.irt
routing table for node 15

aut hor: Janes Knol

145

10.0.0.14

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.15

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t: 10.0.1.0 255. 255. 255. 0 G
pPPO

r out eend.

filenanme: nodel 16.irt
routing table for node 16

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.16
146

MIU: 1500 Metric: 1

i fconfi gend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0

pPppO

r out eend.

filenanme: nodel 17.irt
routing table for node 17

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to- Point

MIU: 1500 Metric: 1

i fconfigend.
147

i net _addr:

10. 0. 0. 17

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
ppp0

r out eend.

filenanme: nodel 18.irt
routing table for node 18

aut hor: Janes Knol

ifconfig:

ethernet card O
name: pppO0 encap: Point-to-Point i net_addr: 10.0.0.18

MIU: 1500 Metric: 1

i fconfigend.

rout e:
defaul t: 10.0.1.0 255. 255.255.0 G
ppp0
148

r out eend.

filenanme: nodel 19.irt
routing table for node 19

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net_addr: 10.0.0.19

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t : 10.0.1.0 255. 255. 255. 0 G
pppO

r out eend.

filenanme: nodel 20.irt
routing table for node 20

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.20

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255. 255. 0 G
pppO

r out eend.

filename: nodel_21.irt
routing table for node 21

aut hor: Janes Knol
150

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU:. 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255. 255. 0
ppp0

r out eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: nodel_22.irt
routing table for node 22

aut hor: Janes Knol

i fconfig:
151

10.0.0. 21

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.22

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
ppp0

r out eend.

filenanme: nodel 23.irt
routing table for node 23

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.0.23

MIU: 1500 Metric: 1
152

i fconfigend.

rout e:

defaul t: 10.0.1.0 255. 255.255.0

pPppO

r out eend.

filenanme: nodel 24.irt
routing table for node 24

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point

MIU: 1500 Metric: 1

i fconfigend.

153

i net _addr:

10.0.0. 24

rout e:

defaul t: 10.0.1.0 255. 255.255.0 G
ppp0

r out eend.

filenanme: nodel 25.irt
routing table for node 25

aut hor: Janes Knol

ifconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net_addr: 10.0.0.25

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t : 10.0.1.0 255. 255. 255. 0 G
pppO

154

r out eend.

filenane: node2 1.irt

routing table for node 1

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:
MIU: 1500 Metric: 1

i fconfigend.

route:

defaul t: 10.0.2.0 255.0.0.0

rout eend.

H oo o e o e o e o e o e e e e e e e e e e e meee oo

filenane: node2 2.irt

routing table for node 2
155

10.0.3.1

G 0

pppO

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.2

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255. 0. 0. 0 G 0 pppo

r out eend.

filename: node2_3.irt
routing table for node 3

aut hor: Janes Knol

i fconfig:

156

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.3

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 ppp0

r out eend.

filenanme: node2 4.irt

routing table for node 4

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point i net _addr: 10.0.3.4

MIU: 1500 Metric: 1

157

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

r out eend.

filenanme: node2 5.irt

routing table for node 5

aut hor: Janes Knol

ifconfig:

ethernet card O

name: pppO0 encap: Point-to-Point inet_addr: 10.0.3.5

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

158

r out eend.

filenane: node2 6.irt

routing table for node 6

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:
MIU: 1500 Metric: 1

i fconfigend.

route:

defaul t: 10.0.2.0 255.0.0.0

rout eend.

H oo o e o e o e o e o e e e e e e e e e e e meee oo

filenane: node2 7.irt

routing table for node 7
159

10.0.3.6

G 0

pppO

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.7

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255. 0. 0. 0 G 0 pppo

r out eend.

filenanme: node2_8.irt
routing table for node 8

aut hor: Janes Knol

i fconfig:

160

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.8

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 ppp0

r out eend.

filenanme: node2 9.irt

routing table for node 9

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point i net _addr: 10.0.3.9

MIU: 1500 Metric: 1

161

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

r out eend.

filenanme: node2 10.irt

routing table for node 10

aut hor: Janes Knol

ifconfig:

ethernet card O

name: pppO0 encap: Point-to-Point i net_addr: 10.0.3.10

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

162

r out eend.

filenanme: node2 11.irt

routing table for node 11

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t: 10.0.2.0

r out eend.

filenanme: node2 12.irt

routing table for node 12

255.0.0.0

163

10.0.3. 11

G 0

pppO

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:
MIU:. 1500 Metric: 1

i fconfigend.

route:

def aul t: 10.0.2.0 255.0.0.0

r out eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: node2_13.irt
routing table for node 13

aut hor: Janes Knol

i fconfig:

164

10.0. 3.12

G

0

pppO

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.13

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 ppp0

r out eend.

filenanme: node2 14.irt

routing table for node 14

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0. 3. 14

MIU: 1500 Metric: 1

165

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

r out eend.

filenanme: node2 15.irt

routing table for node 15

aut hor: Janes Knol

ifconfig:

ethernet card O

name: pppO0 encap: Point-to-Point i net_addr: 10.0.3.15

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

166

r out eend.

filenanme: node2 16.irt

routing table for node 16

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:

MIU: 1500 Metric: 1

i fconfigend.

rout e:

def aul t: 10.0.2.0

r out eend.

filenanme: node2 17.irt

routing table for node 17

255.0.0.0

167

10. 0. 3. 16

G 0

pppO

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:
MIU:. 1500 Metric: 1

i fconfigend.

route:

def aul t: 10.0.2.0 255.0.0.0

r out eend.

H o o o o e o o e e o e e e e e e e e e mmme e e—o s

filename: node2_18.irt
routing table for node 18

aut hor: Janes Knol

i fconfig:

168

10. 0. 3. 17

G

0

pppO

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.18

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 ppp0

r out eend.

filenanme: node2 19.irt
routing table for node 19

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Poi nt-to-Point i net _addr: 10.0.3.19

MIU: 1500 Metric: 1

169

i fconfi gend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO

r out eend.

filenanme: node2 20.irt

routing table for node 20

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point i net _addr: 10.0.3.20

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 pppO
170

r out eend.

filenanme: node2 21.irt

routing table for node 21

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr:
MIU: 1500 Metric: 1

i fconfigend.

route:

defaul t: 10.0.2.0 255.0.0.0

rout eend.

H o o o o e e o o e e e e e e e e e e e oo

filenanme: node2 22.irt
171

10.0.3. 21

G 0

pppO

routing table for node 22

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.22

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255. 0. 0. 0 G 0 pppo

r out eend.

filename: node2_23.irt
routing table for node 23

aut hor: Janes Knol

172

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.23

MIU: 1500 Metric: 1

i fconfigend.

rout e:

defaul t: 10.0.2.0 255. 0. 0. 0 G 0 pppo

r out eend.

filenanme: node2 24.irt
routing table for node 24

aut hor: Janes Knol

i fconfig:

ethernet card O
name: ppp0 encap: Point-to-Point i net _addr: 10.0.3.24

MIU: 1500 Metric: 1
173

i fconfigend.

rout e:

defaul t: 10.0.2.0 255.0.0.0 G 0 ppp0

r out eend.

filenanme: node2 25.irt

routing table for node 25

aut hor: Janes Knol

i fconfig:

ethernet card O

name: ppp0 encap: Poi nt-to-Point i net _addr: 10.0.3.25

MIU: 1500 Metric: 1

i fconfigend.

route:
174

defaul t: 10.0.2.0 255.0.0.0

r out eend.

filenanme: routerl.irt
routing table 1 for voi p networks

aut hor: Janes Knol

ifconfig:

PPP link O to routerl
name: ppp0 encap: Point-to-Point inet_addr:

MIU: 1500 Metric: 1

PPP link 1 to node 1
name: pppl encap: Point-to-Point inet_addr:

MIU: 1500 Metric: 1

PPP link 2 to node 2
name: ppp2 encap: Point-to-Point inet_addr:

MIU: 1500 Metric: 1

PPP link 3 to node 3
175

G 0

10.0.1.1

10.0.1.2

10.0.1.3

pppO

name: ppp3 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 4 to node 4

name: ppp4 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 5 to node 5

name: ppp5 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 6 to node 6

name: ppp6 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 7 to node 7

name: ppp7 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 8 to node 8

name: ppp8 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 9 to node 9

name: ppp9 encap: Point-to-Point

176

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

10.

.10

MIU: 1500 Metric: 1

PPP link 10 to node 10

name: ppplO encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 11 to node 11

name: pppll encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 12 to node 12

name: pppl2 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 13 to node 13

name: pppl3 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 14 to node 14

name: pppl4 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 15 to node 15

name: pppl5 encap: Point-t o- Poi

MIU: 1500 Metric: 1

177

nt

nt

nt

nt

nt

nt

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

11

.12

.13

.14

.15

.16

PPP link 16 to node 16

name: pppl6é encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 17 to node 17

name: pppl7 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 18 to node 18

name: pppl8 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 19 to node 19

name: pppl9 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 20 to node 20

name: ppp20 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 21 to node 21

name: ppp21 encap: Point-to- Poi

MIU: 1500 Metric: 1

178

nt

nt

nt

nt

nt

nt

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

.17

.18

.19

. 20

.21

.22

PPP link 22 to node 22

name: ppp22 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 23 to node 23

name: ppp23 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 24 to node 24

name: ppp24 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 25 to node 25

name: ppp25 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 26 to node 26

name: ppp26 encap: Point-to-Poi

MIU: 1500 Metric: 1

PPP link 27 to node 27

name: ppp27 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 28 to node 28

179

nt

nt

nt

nt

nt

nt

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

.23

.24

. 25

. 26

.27

. 28

name: ppp28 encap: Point-to-Point inet_addr: 10.0.1.29

MIU: 1500 Metric: 1

PPP link 29 to node 29

name: ppp29 encap: Point-to-Point inet_addr: 10.0.1.30

MIU: 1500 Metric: 1

i fconfigend.

rout e:

10.0.0.1 * 255.255.255.255 H 0 pppl

10.0.0. 2 * 255.255.255.255 H 0 ppp2

10.0.0. 3 * 255.255.255.255 H 0 ppp3

10.0.0. 4 * 255.255.255.255 H 0 ppp4

10.0.0.5 * 255.255.255.255 H 0 ppp5

10.0.0. 6 * 255.255.255.255 H 0 ppp6

10.0.0.7 * 255.255.255.255 H 0 ppp7

10.0.0. 8 * 255.255.255.255 H 0 ppp8

10.0.0.9 * 255.255.255.255 H 0 ppp9

10. 0. 0. 10 * 255.255.255.255 H 0 pppl0
10.0.0. 11 * 255.255.255.255 H 0 pppll
10. 0. 0. 12 * 255.255.255.255 H 0 pppl2
10.0.0.13 * 255.255.255.255 H 0 pppl3
10.0.0. 14 * 255.255.255.255 H 0 pppl4d

180

10.0.0. 15 * 255.255.255.255 H 0 pppl5
10.0.0. 16 * 255.255.255.255 H 0 pppl6
10.0.0. 17 * 255.255.255.255 H 0 pppl?
10.0.0. 18 * 255.255.255.255 H 0 pppl8
10.0.0. 19 * 255.255.255.255 H 0 pppl9
10.0.0. 20 * 255.255.255.255 H 0 ppp20
10.0.0.21 * 255.255.255.255 H 0 ppp2l
10.0.0. 22 * 255.255.255.255 H 0 ppp22
10.0.0. 23 * 255.255.255.255 H 0 ppp23
10. 0. 0. 24 * 255.255.255.255 H 0 ppp24
10.0.0. 25 * 255.255.255.255 H 0 ppp25
10.0. 0. 26 * 255.255.255.255 H 0 ppp26
10. 0. 0. 27 * 255.255.255.255 H 0 ppp27
10.0. 0. 28 * 255.255.255.255 H 0 ppp28
10. 0. 0. 29 * 255.255.255.255 H 0 ppp29
def aul t: 10.0.2.0 255.0.0.0 G 0 pppoO

r out eend.

filename: router2.irt
routing table 2 for voi p networks

aut hor: Janes Knol

181

i fconfig:

PPP link O to routerl

name: ppp0 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 1 to node 1

name: pppl encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 2 to node 2

name: ppp2 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 3 to node 3

name: ppp3 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 4 to node 4

name: ppp4 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 5 to node 5

name: ppp5 encap: Point-to-Point

MIU: 1500 Metric: 1

182

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

PPP link 6 to node 6

name: ppp6 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 7 to node 7

name: ppp7 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 8 to node 8

name: ppp8 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 9 to node 9

name: ppp9 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 10 to node 10

name: ppplO encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 11 to node 11

name: pppll encap: Point-to-Point

MIU: 1500 Metric: 1

i net_addr: 10.0.2.7

i net _addr: 10.0.2.8

i net_addr: 10.0.2.9

i net _addr: 10.0.2.10

i net _addr: 10.0.2.11

i net _addr: 10.0.2.12

PPP link 12 to node 12

name: pppl2 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 13 to node 13

name: pppl3 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 14 to node 14

name: pppl4 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 15 to node 15

name: pppl5 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 16 to node 16

name: pppl6é encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 17 to node 17

name: pppl7 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 18 to node 18

184

nt

nt

nt

nt

nt

nt

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

i net _addr:

10.

10.

10.

10.

10.

10.

.13

.14

.15

. 16

.17

. 18

name: pppl8 encap: Point-to-Point

MIU: 1500 Metric: 1

PPP link 19 to node 19

name: pppl9 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 20 to node 20

name: ppp20 encap: Point-t o- Poi

MIU: 1500 Metric: 1

PPP link 21 to node 21

name: ppp2l1 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 22 to node 22

name: ppp22 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 23 to node 23

name: ppp23 encap: Point-to- Poi

MIU: 1500 Metric: 1

PPP link 24 to node 24

nt

nt

nt

nt

nt

name: ppp24 encap: Point-to-Point

185

net addr:

net addr:

net addr:

net addr:

net addr:

net addr:

net addr:

10.

10.

10.

10.

10.

10.

10.

.19

. 20

.21

.22

.23

.24

.25

MIU: 1500 Metric: 1

PPP link 25 to node 25
name: ppp25 encap: Point-to-Point inet_addr: 10.0.2.26

MIU: 1500 Metric: 1

PPP link 26 to node 26
name: ppp26 encap: Point-to-Point inet_addr: 10.0.2.27

MIU: 1500 Metric: 1

PPP link 27 to node 27
name: ppp27 encap: Point-to-Point inet_addr: 10.0.2.28

MIU: 1500 Metric: 1

PPP link 28 to node 28
name: ppp28 encap: Point-to-Point inet_addr: 10.0.2.29

MIU: 1500 Metric: 1

PPP link 29 to node 29
name: ppp29 encap: Point-to-Point inet_addr: 10.0.2.30

MIU: 1500 Metric: 1

i fconfigend.

186

rout e:

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10. 0. 3.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

. 255.

187

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255.

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

Ir r r rr r r rr I* rr rr I*T T T T IT I T IT T T IT T T =T

pppl
ppp2
ppp3
ppp4
PpPPS
PpPpP6
ppp7
pPpp8
PPP9
ppp10
pppll
pppl2
ppp13
pppl4
pPppl5
pppl6
pppl7
pppl8
pppl9
ppp20
ppp21
ppp22
ppp23
ppp24

10.0. 3. 25 *

10. 0. 3. 26 *

10. 0. 3. 27 *

10. 0. 3. 28 *

10. 0. 3. 29 *

defaul t: 10.0.1.0
rout eend.

C. NETWORKS

/] file: codec.ned

/] author: Janes Knol

/] Date: 31 May, 2004

255. 255. 255. 255

255. 255. 255. 255

255. 255. 255. 255

255. 255. 255. 255

255. 255. 255. 255

255.0.0.0

I I T T T

G

PpPpP25
pPpp26
ppp27
ppp28

pPpp29
0

pPppO

/1 Sinple voip configuration to test how codecs respond to

/'l varying the frame size.

The network consists of two

/'l voip nodes connected with a router and wed box on each

/1 network. Each set of

/] frame size with a fixed CODEC data rate.

i mport
"voi pUDPHost ",

runs is conducted by varying the

188

"wr edBox",

"I NE";

modul e codec

par anet er s:

satrate :

numeri c;

subnodul es:

voi pcl

ientl1ll: voi pUDPHost;

par anet er s:

transmn ssi on:

conversation?

rate:

",

before replying to a voice burst:

frane:

",

| ocal _addr = "10.0.0.1",
dest _addr = "10.0.3.1",
| ocal _port = 100,
dest _port = 200,

/'l Voice paraneters

voice_length = input(30s, "Length of voice
")

initiate = i nput (fal se, “Initiate
"y

codec_rate = 1input(64000, "CODEC stream

reply _delay = input(4s, "Time to delay

"y
frame_size = input(20ns, "Length of a

/'l network paraneters

nuncf Ports = 1, //nodes connected to

189

routingFile = "nodel_1.irt";
gat esi zes:
in[1],
out[1];
di spl ay: "p=45, 100;i=pc";
routerl: Router;
par anmet ers:
/'l network paraneters
nuncf Ports = 2, //nodes connected to
routingFile = "routerl.irt";
gat esi zes:
in[2],
out[2];
di splay: "p=160, 100;i =i pc";
w edl: w edBox;
par anmet ers:
win =1, //time span for bw calcs

bw max = input (42000, "Max anount of bw to
allocate to high pri traffic: ");

di splay: "p=210, 100; i =bwxcon_s";
voi pclient2l: voi pUDPHost ;
par anmet ers:
/1 UDP paraneters
| ocal _addr = "10.0.3.1",

dest _addr = "10.0.0.1",
190

| ocal _port = 200,
dest _port = 100,
/'l Voice paraneters

voice length = input(30s, "Length of voice
transm ssion: "),

initiate = i nput (true, “Initiate
conversation? "),

codec_rate = input(64000, "CODEC stream
rate: "),

reply delay = input(4s, "Time to delay
before replying to a voice burst: "),

franme_size = input(20nms, "Length of a

frame: "),
/'l network paraneters

nunf Ports = 1, //nodes connected to
routingFile = "node2_1.irt";

gat esi zes:
in[1],
out[1];

di spl ay: "p=455, 100; i =conp”;

router2: Router;

par anmeters:
/'l network paraneters
nuntf Ports = 2, //nodes connected to
routingFile = "router2.irt";

gat esi zes:
191

in[2],
out[2];
di splay: "p=340, 100;i =i pc";
wred2: w edBox;
par anmet ers:
win = 1s,

bw max = input (42000, "Max anount of bw

allocate to high pri traffic: ");

di splay: "p=290, 100;i =bwxcon_s";

connecti ons nocheck:

voi pclient1ll.out[0] --> routerl.in[1];

voi pclient21.out[0] --> router2.in[1];

routerl.out[0] --> wedl.qln;
wedl. qQut --> datarate satrate --> wed2. passln;

wred2. passQut --> router2.in[0];

router2.out[0] --> wed2.qln;
wred2.qQut --> datarate satrate --> wedl. passln;

wredl. passQut --> routerl.in[0];

router2.out[1] --> voipclient2l.in[0];

192

to

routerl.out[1] --> voipclientll.in[0];

di splay: "p=10, 18; b=345, 156"

endnodul e

network directnw : codec

endnet wor k

filenanme: ommet pp.ini
#ini file for codec. ned

aut hor: Janes Knol

H ot o e o e e e e e e e e e e e e e e e oo
[General]

prel oad-ned-files = *. ned .. I nynodes/ *. ned
@:/home/ | PSui te/ nedfiles. | st ; ned files to | oad

dynam cal |y
network = directnw
t ot al - st ack- kb=7535

simtine-limt = 10m ‘maxi num simulation tinme to run

si mul ati on
cpu-tinme-limt= 1h ;maximumclock time to run simulation
randomseed = 1 ;seed for random nunbers

snapshot-file = codec.sna ;file to output snapshots to

193

;out put-vector-file = codec.vec ;file to output vectors

[Cndenv]
runs-to-execute=1-18 ;runs to execute using crmd environnent
express-node = yes ;run in express node

st at us- frequency=100000 ; frequency for status nessages

[Tkenv]

default-run=1 ;run to execute for TK environment

[Qut Vect or s]

;*.interval = 10s..;delay before starting to record data
#voip and traffic vectors
*.delay_tine.enabled = no

* receive_ rate.enabled = no
*.inst_rec_rate.enabled = no

* . send rate.enabled = no
*.inst_send_rate.enabled = no

* jitter.enabled = no ;jitter in voip apps
#tcp client vectors

*. Send No. enabled = no

* TCP del ay. enabl ed = no

*. Rec No.enabled = no

* . Rec Seq No. enabled = no

* Omd si ze.enabled = no
194

* . Goodput . enabl ed = no

* . Avg_Goodput . enabl ed = no
* Rec_Bits.enabled = no
#wred vectors

* LP_BW enabl ed

no

* . HP_BW enabl ed yes

* HPQ si ze. enabl ed = no

* . LPQ si ze. enabl ed no

[Par anmet er s]

#connecti ons

* sat _datarate = 64000 ;data rate of satellite connection
* sat_error = 0 ;satellite BER

500ns ;delay in satellite |ink

* . sat _del ay

#traffic
*.meg_length = 11200 ;length of a nessage in bits

* traffic_rate = 64000 ;rate of transm ssion

voi p app configuration
*.voip_clients = 3 ;nunber of voip clients
*.voice_length = 30s ;length of a voice burst

*.voipclientll.initiate = true ;does this client initiate

t he conversation

* voipclient2l.initiate = fal se
195

* codec_rate = 5300 ;data rate for voip client

* . reply_del ay 4s ;delay before sending a reply

;*. frane_si ze 140ms ;size of a frame

*.init_delay 2s ;delay before first burst

* . talk_cycle 50 ; percent off hook

*.call _length = 30m ;length of a cal

#wr edbox

* bw_nmax = 48000 ;48 for 64k and 75 for 128k

* . hpg_m n_t hresh 40 ;when to start random drop
* . hpg_max_thresh = 64 ;max drop
*.hpg_npd = 10 ;percent to drop

20 ;when to start random drop

*.1'pg_m n_thresh
*. I pg_max_thresh = 34 ;max drop
*.Ipg_npd = 10 ;percent to drop
*.max_q_len = 64 ; max queue depth

*.n = .01 ; wei ghting factor

TCP

;*.clients_netl = 2 ;nunber of tcp clients in network 1
*.clients_net2 = 0 ;nunber of tcp clients in network 2
* . mes=1400 ; maxi mum segnent si ze

* . tcp. debug=true ; debug on

*. message_| ength = 64000000 ;1 ength of nessage to transmt

196

processing delays for all nodes
* . preRouting. procdelay = 0
*.routing. procdelay = 0.2 us
*.local Deliver.procdelay = 1 us

* . send. procdelay = 0.5 us

* fragnentation.procdelay = 0.1 us

*. icnp.procdelay = 0

* . tunneling. procdelay = 0
*.multicast.procdelay = 0
* output[*].procdelay = 0.2 us

* .1 nput Queue. procdelay = 0.1 us

* . networklnterface. procdelay = 0

hook nanes

*. gosBehavi or Cl ass = "EnqueueW t hout QoS"
currently inplenented

#configurati on changes between runs
[Run 1]
out put-vector-file = codecl. vec

* . frame_size = 10ns

[Run 2]
out put -vector-file = codec2.vec

* frame_size = 20ns
197

;only

hook

[Run 3]
out put -vector-file = codec3. vec

* frame_size = 30ns

[Run 4]
out put -vector-file = codec4. vec

* frane_size = 40ns

[Run 5]
out put -vector-file = codech. vec

* . frame_size = 50ns

[Run 6]
out put -vector-file = codec6. vec

* . frame_size = 60ns

[Run 7]
out put-vector-file = codec7. vec

* . frame_size = 80ns

[Run 8]
out put -vector-file = codec8. vec

* frame_size = 100ms

198

[Run 9]
out put -vector-file = codec9. vec

* frame_size = 120ms

[Run 10]
out put -vector-file = codecl0. vec

* frane_size = 150ns

[Run 11]
out put -vector-file = codecll. vec

* frame_size = 200ns

[Run 12]
out put -vector-file = codecl2. vec

* frame_size = 250ns

[Run 13]
out put -vector-file = codecl3. vec

* frame_size = 300ns

[Run 14]
out put -vector-file = codecl4. vec

* frame_size = 330ns

[Run 15]
199

out put -vector-file = codecl5. vec

* frame_size = 350ms

[Run 16]
out put -vector-file = codecl6. vec

* frane_size = 400ns

[Run 17]
out put -vector-file = codecl7.vec

* frane_size = 450ns

[Run 18]
out put -vector-file = codecl8. vec

* frame_size = 500ns

/1l file: codec_w.ine. ned

/] author: Janes Knol

/] Date: 31 May, 2004

[l Sinmple voip configuration with INEs to test how CODECs
/1l respond to varying the frame size. It is used with
/'l codec.ned to show the effect of the INE on the effective

/1l data rate. The network consists of two voi p nodes
200

// connected with a router and wed box on each network.

/'l Each set of runs is conducted by varying the frane size

// with a fixed CODEC data rate.

e e
i mport

"voi pUDPHost ",

"wr edBox",

"1 NE";

nodul e codec_w i ne
par aneters:
satrate : numeric;
subnodul es:
voi pclient11l: voi pUDPHost ;
par aneters:
| ocal _addr = "10.0.0.1",
dest _addr = "10.0.3.1",
| ocal _port = 100,
dest _port = 200,
/'l Voice paraneters

voi ce_l ength = input(30s,

transm ssion: "),

initiate = i nput (fal se,

conversation? "),

201

"Length of

Voi ce

"Initiate

codec_rate = input (64000, " CODEC

rate: "),

reply delay = input(4s, "Tinme to

before replying to a voice burst: "),

frame_size = input(20ns, "Lengt h
frame: "),
/'l network paraneters
nuncf Ports = 1, //nodes connected to
routingFile = "nodel _1.irt";
gat esi zes:
in[1],
out[1];
di splay: "p=45,100;i=pc";
inell: |INE

di splay: "p=100, 100;i =i pc";
routerl: Router;
par anmet er s:
/'l network paraneters
nunmof Ports = 2, //nodes connected to
routingFile = "routerl.irt";
gat esi zes:
in[2],
out[2];
di splay: "p=160, 100;i =i pc";

wredl: w edBox;

202

stream

del ay

of

a

par anet er s:
win = 1s, //w ndow size for bw calcs

bw_max = input (42000, "Max anount of bw to
allocate to high pri traffic: ");

di splay: "p=210, 100;i =bwxcon_s";
voi pclient2l: voi pUDPHost ;
par anmet ers:
/1 UDP paraneters
| ocal _addr = "10.0.3.1",
dest _addr = "10.0.0.1",
| ocal _port = 200,
dest _port = 100,
/'l Voice paraneters

voice_length = input(30s, "Length of voice
transm ssion: "),

initiate = i nput (true, "Initiate
conversation? "),

codec_rate = 1input(64000, "CODEC stream
rate: "),

reply _delay = input(4s, "Time to delay
before replying to a voice burst: "),

frame_size = input(20ns, "Length of a

frame: "),
/'l network paraneters
nuncf Ports = 1, //nodes connected to

routingFile = "node2_1.irt";

203

gat esi zes:
in[1],
out[1];
di spl ay: "p=455, 100;i =conp";
ine2l: INE
di splay: "p=400, 100;i =i pc";
router2: Router;
par anmet ers:
/'l network paraneters
nuncf Ports = 2, //nodes connected to
routingFile = "router2.irt";
gat esi zes:
in[2],
out[2];
di spl ay: "p=340, 100;i =i pc";
w ed2: w edBox;
par anmet ers:
win =1s, //w ndow to use for bw calcs

bw_max = input (42000, "Max anmount of bw to
allocate to high pri traffic: ");

di splay: "p=290, 100; i =bwxcon_s";

connecti ons nocheck:
voi pclientll. out[0] --> inell. plainln;

i nell. cypherQut --> routerl.in[1];
204

voi pclient2l.out[0] --> ine2l.plainln;

i ne2l. cypherQut --> router2.in[1];

routerl.out[0] --> wedl.qln;
wedl. qQut --> datarate satrate --> wed2. passln;

wr ed2. passQut --> router2.in[0];

router2.out[0] --> wed2.qln;
wed2. qQut --> datarate satrate --> wedl. passln;

wr edl. passQut --> routerl.in[0];

router2.out[1l] --> ine2l.cypherln;

i ne2l. pl ai nQut --> voipclient2l.in[0];

routerl.out[1l] --> inell.cypherln;

i nell. plainQut --> voipclientll.in[0];

di splay: "p=10, 18; b=345, 156"

endnodul e

network directnw : codec_w_ine

endnet wor k

filenane: ommet pp.ini
#ini file for codec_w_ i ne. ned

aut hor: Janes Knol

H o o o o e e e e e e e e e e e e e eeaa o

[General]

prel oad- ned-fil es = *. ned ../ mynodes/ *. ned
@:/ home/ | PSuite/ nedfil es. | st ; ned files to | oad

dynam cal |y
network = directnw
t ot al - st ack- kb=7535

simtine-limt = 10m cmaxi num sinulation tinme to run

simul ati on

cpu-tinme-limt= 1h ;maxinmumclock tinme to run sinulation
random seed = 1 ;seed for random nunbers

snapshot-file = codec.sna ;file to output snapshots to

;out put-vector-file = codec.vec ;file to output vectors

[Chdenv]
runs-to-execute=1-50 ;runs to execute using cnd environnent
express-node = yes ;run in express node

st at us-frequency=100000 ; frequency for status nessages

[Tkenv]

default-run=1 ;run to execute for TK environment

206

[Qut Vect or s]

;*.interval = 10s ;delay before starting to record data
#voip and traffic vectors

*. delay_tine.enabled = no

* receive_ rate.enabled = no

*. inst _rec rate.enabled = no

* . send rate.enabled = no

*. inst_send rate.enabled = no

* Jitter.enabled = no ;jitter in voip apps
#tcp client vectors

*. Send No. enabled = no

*. TCP del ay. enabl ed = no

*. Rec No.enabled = no

*. Rec Seq No. enabled = no

*.Ownd size.enabled = no

* . Goodput . enabl ed = no

* . Avg_Goodput . enabl ed = no

* . Rec_Bits.enabled = no

#wred vectors

*. LP_BW enabl ed

no

* . HP_BW enabl ed yes

* . HPQ _si ze. enabl ed

no

* . LPQ si ze. enabl ed no

207

[Par amet er s]

#connecti ons

* sat _datarate = 64000 ;data rate of satellite connection

*. sat _error = 0 ;satellite BER

* sat _del ay 500ns ;delay in satellite link
#traffic
* . meg_length = 11200 ;length of a nessage in bits

* traffic rate = 64000 ;rate of transm ssion

voi p app configuration
*.voip_clients = 3 ;nunber of voip clients
*.voice_length = 30s ;length of a voice burst

*.voipclientll.initiate = true ;does this client

t he conversation
*.voipclient2l.initiate = fal se

*.codec_rate = 5300 ;data rate for voip client

* . reply_del ay 4s ;delay before sending a reply

;*.frame_size = 140ns ;size of a frane

*.init_delay 2s ;del ay before first burst

*. talk_cycle 50 ; percent off hook

*.call _length = 30m;length of a cal
#wr edbox
*. bw_max = 48000 ;48 for 64k and 75 for 128k

208

initiate

*. hpg_mn_thresh = 40 ;when to start random drop
* . hpg_max_thresh = 64 ;. max drop

* hpg_npd = 10 ; percent to drop
*lpg_mn_thresh = 20 ;when to start random drop
*. Il pg_max_thresh = 34 ; max drop

* Il pg_npd = 10 ; percent to drop

*.max_q_len = 64 ; max queue depth

*n = .01 ;wei ghting factor

TCP

;*.clients_netl = 2 ;nunber of tcp clients in network 1
*.clients_net2 = 0 ;nunber of tcp clients in network 2
* . mes=1400 ; maxi mnum segnent si ze

*.tcp. debug=true ; debug on

*. message_| ength = 64000000 ;1 ength of nessage to transmt

processing delays for all nodes
* . preRouting. procdelay = 0

*.routing. procdelay = 0.2 us

*

.l ocal Deliver.procdelay = 1 us
* . send. procdelay = 0.5 us
* . fragnentation.procdelay = 0.1 us

*. icnp.procdelay = 0

I
o

* . tunnel i ng. procdel ay

I
o

*.mul ticast. procdel ay
209

* . output[*].procdelay = 0.2 us
* i nput Queue. procdelay = 0.1 us

* networkl nterface. procdelay = 0

hook nanes

* . qosBehavi or C ass = "EnqueueW t hout QoS"

currently inplenmented within I PSuite

#configurati on changes between runs
[Run 1]
out put -vector-file = codecl. vec

* . frame_size = 10ns

[Run 2]
out put -vector-file = codec2.vec

* . frame_size = 20ns

[Run 3]
out put -vector-file = codec3. vec

* . frame_size = 30ns

[Run 4]
out put -vector-file = codec4. vec

* frame_size = 40ns

210

;only

hook

[Run 5]
out put -vector-file = codech. vec

* frame_size = 50ns

[Run 6]
out put -vector-file = codec6. vec

* frane_size = 60ns

[Run 7]
out put -vector-file = codec7.vec

* frame_size = 70ns

[Run 8]
out put -vector-file = codec8. vec

* frame_size = 80ns

[Run 9]
out put -vector-file = codec9. vec

* . frame_size = 90ns

[Run 10]
out put -vector-file = codecl0. vec

* frame_size = 100ns

[Run 11]
211

out put -vector-file =

* frame_size = 110ms

[Run 12]
out put -vector-file =

* frane_size = 120ns

[Run 13]
out put -vector-file =

* frane_size = 130ns

[Run 14]
out put -vector-file =

* frame_size = 140ns

[Run 15]
out put -vector-file =

* frame_size = 150ns

[Run 16]
out put -vector-file =

* . frame_size = 160ns

[Run 17]

out put -vector-file =

codecll.

codecl?2.

codec13.

codecl4.

codecl5.

codecl6.

codecl?

vec

vec

vec

vec

vec

vec

. vec

212

* frame_size = 170ms

[Run 18]
out put -vector-file =

* frane_size = 180ns

[Run 19]
out put -vector-file =

* frane_size = 190ns

[Run 20]
out put -vector-file =

* frame_size = 200ns

[Run 21]
out put -vector-file =

* frame_size = 210ns

[Run 22]
out put -vector-file =

* frame_size = 220ns

[Run 23]
out put -vector-file =

* frame_size = 230ms

codecl8.

codec19.

codec?20.

codec?21.

codec?22.

codec?23.

vec

vec

vec

vec

vec

vec

213

[Run 24]

out put -vector-file =

* frame_size

[Run 25]

240ns

out put -vector-file =

* frane_size

[Run 26]

250ns

out put -vector-file =

* frane_size

[Run 27]

260ns

out put -vector-file =

* frane_size

[Run 28]

270ms

out put -vector-file =

* franme_size

[Run 29]

280nms

out put -vector-file =

* frame_size

290ns

codec?24.

codec?25.

codec?26.

codec?27.

codec?28.

codec?29.

vec

vec

vec

vec

vec

vec

214

[Run 30]
out put -vector-file =

* frame_size = 300ms

[Run 31]
out put -vector-file =

* frane_size = 310ns

[Run 32]
out put -vector-file =

* frame_size = 320ns

[Run 33]
out put -vector-file =

* frame_size = 330ns

[Run 34]
out put -vector-file =

* . frame_size = 340ns

[Run 35]

out put -vector-file =

* frame_size = 350ns

[Run 36]

codec30.

codec31.

codec32.

codec33.

codec34.

codec35.

vec

vec

vec

vec

vec

vec

215

out put -vector-file

* frame_size = 360ms

[Run 37]

out put -vector-file

* frane_size = 370ns

[Run 38]

out put -vector-file

* frane_size = 380ns

[Run 39]

out put -vector-file

* frame_size = 390ns

[Run 40]

out put -vector-file

* . frame_size = 400ns

[Run 41]

out put-vector-file

* . frame_size = 410ns

[Run 42]

out put -vector-file

codec36.

codec37.

codec38.

codec39.

codec40.

codec4l.

codec4?2

vec

vec

vec

vec

vec

vec

. vec

216

* frame_size = 420ms

[Run 43]
out put -vector-file =

* frane_size = 430ns

[Run 44]
out put -vector-file =

* frane_size = 440ns

[Run 45]
out put -vector-file =

* frame_size = 450ns

[Run 46]
out put -vector-file =

* frame_size = 460ns

[Run 47]
out put -vector-file =

* . frame_size = 470ns

[Run 48]
out put -vector-file =

* frame_size = 480ms

codec43. vec

codec44. vec

codec4bs. vec

codec46. vec

codec47. vec

codec48. vec

217

[Run 49]
out put -vector-file = codec49. vec

* frame_size = 490ms

[Run 50]
out put -vector-file = codec50. vec

* frane_size = 500ms

/] file: slow ned

[/ author: Janes Knol

/1l Date: 31 May, 2004

/1 Sinple voip configuration to test if tcp data traffic
/1l can be nodel ed using the UDP application devel oped. It
/'l consists of a variable nunber of clients with

/'l correspondi ng servers and a vari abl e nunber of voip

/'l conversations. Various |oading conditions are

/1 acconplished by changi ng the nunber of TCP and voip

/1l clients in each run. The current Iimt is 4 voip nodes
/1 and up to 25 total nodes per network but can easily be

/! increased if needed.

i nport
"Router",
"TCPd i ent Node",
" TCPSer ver Node" ,
"voi pUDPHost ",
"1 NE",

"wr edBox" ;

modul e sl ow
par anet er s:

clients_netl : nunmeric const, //nunber of clients
on network 1

clients_net2 : nuneric const, //nunber of clients
on network 2

voi p_clients: nuneric const, [I nunmber of voip
pairs

sat _datarate : nuneric const, //data rate of
satellite

sat_error : nuneric const, /I BER for satellite

sat _delay : nuneric const; [/ delay for satellite

subnodul es:
voi pclientl: voi pUDPHost [voip_clients];

par anet er s:

219

| ocal _port = 100,
dest _port = 200,
/'l Voice paraneters

voice length = input(30s, "Length of voice

transm ssion: "),

initiate = i nput (fal se, “Initiate
conversation? "),

codec_rate = input(64000, "CODEC stream
rate: "),

reply delay = input(4s, "Time to delay

before replying to a voice burst: "),

franme_size = input(20nms, "Length of a
frame: "),

/'l network paraneters

nunmof Ports = 1; //nodes to connect to
paranmeters if index==0:

| ocal _addr = "10.0.0.1",

dest _addr = "10.0.3.1",

routingFile = "nodel 1.irt";
paraneters if index==1:

| ocal _addr = "10.0.0.2",

dest _addr = "10.0. 3. 2",

routingFile = "nodel 2.irt";
paranmeters if index==2:

| ocal _addr = "10.0.0.3",

dest _addr = "10.0. 3. 3",
220

routingFile = "nodel_3.irt";
paranmeters if index==3:
| ocal _addr = "10.0.0.4",
dest _addr = "10.0. 3. 4",
routingFile = "nodel _4.irt";
gat esi zes:
in[1],
out[1];
di spl ay: "p=40, 160, row; i =pc";
inel: INE [voip_clients];
di splay: "p=40, 200, row; i =i pc"
voi pclient2: voi pUDPHost [voip_clients];
par anmet ers:
| ocal _port = 200,
dest _port = 100,
/'l Voice paraneters

voice_length = input(30s, "Length of voice
transm ssion: "),

initiate = i nput (fal se, “"Initiate
conversation? "),

codec_rate = 1input(64000, "CODEC stream
rate: "),

reply _delay = input(4s, "Time to delay

before replying to a voice burst: "),

frame_size = input(20ns, "Length of a
frame: "),
221

/'l network paraneters

nuntf Ports = 1; //nodes to connect to

paranmeters if index==0:
| ocal _addr = "10.0.3.1",
dest addr = "10.0.0.1",
routingFile = "node2_1.irt";
parameters if index==1:
| ocal _addr = "10.0. 3. 2",
dest _addr = "10.0.0. 2",
routingFile = "node2_2.irt";
paranmeters if index==2:
| ocal _addr = "10.0.3.3",
dest _addr = "10.0.0.3",
routingFile = "node2_3.irt";
paranmeters if index==3:
| ocal _addr = "10.0.3.4",
dest _addr = "10.0.0.4",
routingFile = "node2 4.irt";
gat esi zes:
in[1],
out[1];
di spl ay: "p=40, 340, row; i =pc";
ine2: INE [voip_clients];
di splay: "p=40, 300, row; i =i pc";

tcpclientl: TCPO ientNode[clients netl];
222

par anet ers:
[/l TCP paraneters

| ocal _addr = (10 << 24) +

1+voi p_cl i ent s+i ndex,

server _addr = (10 <<24) +(3 <<8) +

1+voi p_clients+i ndex+cl i ents_net 2,
/'l network paraneters
nunOf Ports = 1; //nodes to connect to
parameters if index+voip_clients==0:
routingFile = "nodel _1.irt";
parameters if index+voip_clients==1:
routingFile = "nodel 2.irt";
parameters if index+voip_clients==2:
routingFile = "nodel 3.irt";
paranmeters if index+voip_clients==3:
routingFile = "nodel 4.irt";
paranmeters if index+voip_clients==4:
routingFile = "nodel 5.irt";
paranmeters if index+voip_clients==5:
routingFile = "nodel _6.irt";
paranmeters if index+voip_clients==6:
routingFile = "nodel_7.irt";
paranmeters if index+voip_clients==7:
routingFile = "nodel 8.irt";
paranmeters if index+voip_clients==8:

223

routingFile = "nodel 9.irt";
paranmeters if index+voip_clients==9:
routingFile = "nodel 10.irt";
paranmeters if index+voip_clients==10:
routingFile = "nodel _11.irt";
paranmeters if index+voip_clients==11
routingFile = "nodel _12.irt";
paranmeters if index+voip_clients==12:
routingFile = "nodel _13.irt";
paranmeters if index+voip_clients==13:
routingFile = "nodel_14.irt";
paranmeters if index+voip_clients==14:
routingFile = "nodel_15.irt";
paranmeters if index+voip_clients==15:
routingFile = "nodel_16.irt";
paranmeters if index+voip_clients==16:
routingFile = "nodel _17.irt";
paraneters if index+voip_clients==17:
routingFile = "nodel_18.irt";
paraneters if index+voip_clients==18:
routingFile = "nodel_19.irt";
paranmeters if index+voip_clients==19:
routingFile = "nodel_20.irt";

paranmeters if index+voip_clients==20:

routingFile = "nodel 21.irt";
224

paranmeters if index+voip_clients==21:
routingFile = "nodel 22.irt";
paranmeters if index+voip_clients==22:
routingFile = "nodel 23.irt";
paranmeters if index+voip_clients==23:
routingFile = "nodel 24.irt";
paranmeters if index+voip_clients==24:
routingFile = "nodel 25.irt";
gat esi zes:
in[1],
out[1];
di splay: "p=40, 40, row; i =pc"
tcpclient2: TCPO ient Node[clients_net?2];
par anmet ers:
[l TCP paraneters

| ocal _addr = (10 << 24 +(3 <<8)+

1+voi p_cl i ent s+i ndex,

server _addr = (10 <<24) +

1+voi p_clients+i ndex+clients_net1,
/'l network paraneters
nuncf Ports = 1;
paranmeters if index+voip_clients==0:
routingFile = "node2_1.irt";
paranmeters if index+voip_clients==1:
routingFile = "node2_2.irt";

225

paranmeters if index+voip_cl
routingFile = "node2_ 3.1
paranmeters if index+voip_cl
routingFile = "node2 4.i
parameters if index+voip_cl
routingFile = "node2 5.1
parameters if index+voip_cl
routingFile = "node2 6.1
paranmeters if index+voip_cl
routingFile = "node2 7.1
paranmeters if index+voip_cl
routingFile = "node2_8.i
paranmeters if index+voip_cl
routingFile = "node2_9.i
paranmeters if index+voip_cl
routingFile = "node2_10.
paranmeters if index+voip_cl
routingFile = "node2_11.
paraneters if index+voip_cl
routingFile = "node2_12.
paraneters if index+voip_cl
routingFile = "node2_13.
paraneters if index+voip_cl
routingFile = "node2_ 14.

paranmeters if index+voip_cl

226

ent s==2:
re”;
ent s==3:
re”;
ent s==4:
re”;
ent s==5:
re”;
ent s==6:
re”;
ent s==7:
re”;
ent s==8:
re”;
ent s==9:
irt";
ent s==10:
irt";
ent s==11:
irt";
ent s==12:
irt";
ent s==13:
irt";

ent s==14:

routingFile = "node2_15.irt";

paranmeters if index+voip_cl
routingFile = "node2_ 16.
paraneters if index+voip_cl
routingFile = "node2_17.
paranmeters if index+voip_cl
routingFile = "node2_ 18.
paranmeters if index+voip_cl
routingFile = "node2_19.
parameters if index+voip_cl
routingFile = "node2_20.
paranmeters if index+voip_cl
routingFile = "node2_21.
paranmeters if index+voip_cl
routingFile = "node2_22.
paranmeters if index+voip_cl
routingFile = "node2_23.
paraneters if index+voip_cl
routingFile = "node2_24.

paraneters if index+voip_cl

ent s==15:
irt";
ent s==16:
irt";
ent s==17:
irt";
ent s==18:
irt";
ent s==19:
irt";
ent s==20:
irt";
ent s==21:
irt";
ent s==22:
irt";
ent s==23:
irt";
ent s==24:

routingFile = "node2_25.irt";

gat esi zes:
in[1],

out[1];

di splay: "p=40, 460, row; i =pc";

227

tcpserverl: TCPServerNode[clients netl];
par anet ers:
par anet ers:
/1 TCP paraneters

| ocal _addr = (10 <<24) +(3 <<8) +

1+voi p_clients+i ndex+cl i ents_net 2,
/'l network paraneters
nuncf Ports = 1;

paranmeters if (index+clients _net2+voip_clients)

routingFile = "node2_1.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2_2.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2 _3.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_4.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_5.irt";

paranmeters if (index+clients _net2+voip_clients)

routingFile = "node2 6.irt";

228

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2_7.irt";

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2 _8.irt";

parameters if (index+clients _net2+voip_clients)

routingFile = "node2 9.irt";

parameters if (index+clients _net2+voip_clients)

routingFile = "node2_10.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2_11.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2_12.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_13.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_14.irt";

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2_15.irt";
229

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2_16.irt";

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2_17.irt";

parameters if (index+clients _net2+voip_clients)

routingFile = "node2_18.irt";

parameters if (index+clients _net2+voip_clients)

routingFile = "node2_19.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2_20.irt";

paraneters if (index+clients_net2+voip_clients)

routingFile = "node2_21.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_22.irt";

paranmeters if (index+clients_net2+voip_clients)

routingFile = "node2_23.irt";

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2 24.irt";
230

paranmeters if (index+clients net2+voip_clients)

routingFile = "node2_25.irt";
gat esi zes:

in[1],

out[1];
di spl ay: "p=40, 400, r ow; i =conp"

tcpserver2: TCPServer Node[clients _net2];

par anmet ers:

par anmet ers:

[l TCP paraneters

| ocal _addr = (10 <<24) +

1+voi p_clients+i ndex+clients_net1,
/'l network paraneters
nuncf Ports = 1;

paraneters if (index+clients_netl+voip_clients)

routingFile = "nodel_1.irt";

paranmeters if (index+clients_netl+voip_clients)

routingFile = "nodel_2.irt";

paranmeters if (index+clients_netl+voip_clients)

routingFile = "nodel 3.irt";

paranmeters if (index+clients _netl+voip_clients)

231

12:

routingFile = "nodel 4.irt";

paranmeters if (index+clients netl+voip_cli

routingFile = "nodel 5.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel 6.irt";

parameters if (index+clients _netl+voip_cli

routingFile = "nodel _7.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel 8.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel 9.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel_10.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel_11.irt";

paranmeters if (index+clients_netl+voip_cli

routingFile = "nodel 12.irt";

paranmeters if (index+clients netl+voip_cli

232

ents)

ents)

ents)

ents)

ents)

ents)

ents)

ents)

ents)

routingFile = "nodel 13.irt";

paranmeters if (index+clients netl+voip_clients)

routingFile = "nodel _14.irt";

parameters if (index+clients _netl+voip_clients)

routingFile = "nodel _15.irt";

parameters if (index+clients _netl+voip_clients)

routingFile = "nodel _16.irt";

paraneters if (index+clients_netl+voip_clients)

routingFile = "nodel _17.irt";

paraneters if (index+clients_netl+voip_clients)

routingFile = "nodel_18.irt";

paraneters if (index+clients_netl+voip_clients)

routingFile = "nodel_19.irt";

paranmeters if (index+clients_netl+voip_clients)

routingFile = "nodel_20.irt";

paranmeters if (index+clients_netl+voip_clients)

routingFile = "nodel 21.irt";

paranmeters if (index+clients netl+voip_clients)

233

routingFile = "nodel 22.irt";

paranmeters if (index+clients netl+voip_clients)

==22:
routingFile = "nodel 23.irt";
parameters if (index+clients _netl+voip_clients)
==23:
routingFile = "nodel 24.irt";
parameters if (index+clients _netl+voip_clients)
==24.

routingFile = "nodel _25.irt";
gat esi zes:

in[1],

out[1];

di splay: "p=40, 100, row; i =conp";

routerl: Router;
par anet er s:
/'l network paraneters

nuntf Port s =

1+voi p_clients+clients_netl+clients_net2,
routingFile = "routerl.irt";

gat esi zes:

i n[1+voi p_clients+clients _netl+clients net2],

out[1+voi p_clients+clients _netl+clients net?2];

234

di splay: "p=140, 220;i =i pc";
router2: Router;
par anmet ers:
/'l network paraneters

nuncf Port s =

1+voi p_clients+clients_netl+clients_net2,
routingFile = "router2.irt";

gat esi zes:

i n[1+voi p_clients+clients_netl+clients _net2],

out[1+voi p_clients+clients_netl+clients_net?2];

di splay: "p=140, 280;i =i pc";

w edl: w edBox;
par anet er s:
win =2s, //w ndow size for bw cal cs

bw max = input (42000, "Max anount of bw to
allocate to high pri traffic: ");

di splay: "b=16, 15; p=100, 250; i =bwxcon_s";
wred2: w edBox;
par anmet er s:

win =2s, //w ndow size for bw calcs

bw max = input (42000, "Max anount of bw to

allocate to high pri traffic: ");

di splay: "b=16, 15; p=180, 250; i =bwxcon_s";
235

connecti ons nocheck:
for i=1..voip clients do //network 1
voipclientl[i-1].out[0] --> inel[i-1].plainln;
inel[i-1].cypherQut --> routerl.in[i];
routerl.out[i] --> inel[i-1].cypherln;
inel[i-1].plainQut --> voipclientl[i-1].in[0];

endf or ;

for i=1..voip clients do //network 2
voi pclient2[i-1].o0ut[0] --> ine2[i-1].plainln;
ine2[i-1].cypherQut --> router2.in[i];
router2.out[i] -->ine2[i-1].cypherln;
ine2[i-1].plainCut --> voipclient2[i-1].in[0];

endf or ;

for i=1..clients netl do //network 1

tcpclient1[i-1]. out[O] -->

routerl.in[i+voip_clients];

tcpserver1[i-1]. out[0] -->

router2.in[i+clients_net2+voip_clients];

routerl.out[i+voi p_clients] --> tcpclientlfi-
1]1.1n[0];

router2.out[i+clients_net2+voi p_clients] -->

tcpserver1[i-1].in[0];

236

endf or ;

for i=1l..clients _net2 do //network 2

tcpclient2[i-1].out[0] -->

router2.in[i+voip_clients];

tcpserver2[i-1].out[0] -->

routerl.in[i+clients_netl+voip_clients];

router2.out[i+voi p_clients] --> tcpclient2]i-
1]1.1in[0];

routerl.out[i+clients_netl+voip_clients] -->

tcpserver2[i-1].in[0];

endf or ;

routerl.out[0] --> wedl. gln;

wr edl. qQut --> dat arate sat _datarate error
sat _error delay sat_delay --> wed2. passln;

wr ed2. passQut --> router2.in[0];

router2.out[0] --> wed2.qln;

wr ed2. qQut --> dat arate sat _datarate error
sat _error delay sat_delay --> wedl. passln

wredl. passQut --> routerl.in[O0];

endnodul e

network directnw : slow

237

endnet wor k

filenane: ommet pp.ini
#ini file for slow ned

aut hor: Janes Knol

2

[General]

prel oad- ned-fil es = *. ned ../ mynodes/ *. ned
@:/ home/ | PSuite/ nedfiles. | st ; ned files to | oad

dynam cal |y
network = directnw
t ot al - st ack- kb=7535

simtine-limt = 10m cmaxi num sinmulation tinme to run

simul ation

cpu-time-limt= 30m ; maxi numclock tinme to run sinulation
random seed = 1 ; seed for random nunbers
snapshot-file = tcpip.sna ;file to output snapshots to

;output-vector-file = tcpip.vec ;file to output vectors

[Chdenv]
runs-to-execute=1-4 ;runs to execute using cnd environnment

express-node = yes ;run in express node

238

st at us-frequency=100000 ; frequency for status nessages

[Tkenv]

def aul t -run=1 run to execute for TK environnent

[Qut Vect or s]

;*.interval = 10s ;del ay before starting to record data
#voip and traffic vectors

*. delay_tine.enabled = no

* receive_ rate.enabled = no

*.inst_rec_rate.enabled = no

* . send rate.enabled = no

*.inst_send rate.enabled = no

*. Jitter.enabled = no ;jitter in voip apps
#tcp client vectors

*. Send No. enabled = no

* TCP del ay. enabl ed = no

*. Rec No.enabled = no

* . Rec Seq No. enabled = no

*.Omnd size.enabled = no

* . Goodput . enabl ed = no

* . Avg_Goodput . enabl ed = no

* Rec_Bits.enabled = no

#wr ed vectors
239

*. LP_BW enabl ed

no

* . HP_BW enabl ed yes

* . HPQ si ze. enabl ed = no

* LPQ si ze. enabl ed = no

[Par amet er s]

#connecti ons

* sat _datarate = 64000 ;data rate of satellite connection
* sat _error =0 ;satellite BER

* sat _del ay 500ns ;delay in satellite link

#traffic

*.meg_length = 11200 ;length of a nessage in bits

* traffic_rate = 64000 ;rate of transm ssion

voi p app configuration

*.voip_ clients = 3 ; nunber of voip clients
*.voi ce_l ength = 30s ;length of a voice burst
;*.voipclientl[O].initiate = true ;does this client

initiate the conversation

*.voipclient2[0].initiate = fal se
;*.voipclientl[1l].initiate = true
*.voipclient2[1l].initiate = fal se
;*.voipclientl[2].initiate = true

*voipclient2[2].initiate = fal se
240

.voipclientl[3].initiate

.init_del ay

.tal k_cycle

fal se

.voipclient2[3].initiate = fal se

.voipclient1l[0].codec_rate = 5300 ;data rate for

i ent

.voi pclient2[0].codec_rate = 5300
.voipclientl[1].codec_rate = 5300
.voipclient2[1].codec_rate = 5300
.voi pclientl][?2].codec_rate = 16000
.voi pclient2[2].codec_rate = 16000
.voi pclientl]3].codec_rate = 16000
.voi pclient2[3].codec_rate = 16000
.reply _delay = 4s ;delay before sending a reply

.frame_size = 140ns ;size of a frame

4s ;del ay before first burst

50 ; percent off hook

*.call _length = 30m;length of a cal

#wr edbox

*. bw_max = 48000 ;48 for 64k and 75 for 128k

*. hpg_mn_thresh = 40 ;when to start random drop
* . hpg_max_thresh = 64 ; max drop

* . hpg_nmpd = 10 ; percent to drop
*.Ilpg_mn_thresh = 20 ;when to start random drop
*. Il pg_max_thresh = 34 ;. max drop

* Il pg_npd = 10 ; percent to drop

241

voi p

*max_q_len = 64 ; max queue depth

*n = .01 ;wei ghting factor

TCP
;*.clients_netl = 2 ;nunber of tcp clients in network 1
*.clients_ net2 = 0 ;nunber of tcp clients in network 2

* . mes=1400 ; maxi mum segnent si ze

*

.t cp. debug=true ; debug on

*. message_| ength = 64000000 ;1 ength of nessage to transmt

processing delays for all nodes
* . preRouting. procdelay = 0

*.routing.procdelay = 0.2 us

*

.l ocal Deliver.procdelay = 1 us
*.send. procdelay = 0.5 us
* fragnentation.procdelay = 0.1 us

*. icnp.procdelay = 0

*.tunneling.procdelay = 0
*. multicast.procdelay = 0
.output[].procdelay = 0.2 us

* .1 nput Queue. procdelay = 0.1 us

*

.networkl nterface. procdelay = 0

hook nanes

242

* . qosBehavi or d ass =

"EnqueueW t hout QoS"

;only

currently inplemented in I PSuite

#configurati on changes between runs

[Run 1]

*. clients netl = 3

* voipclientl[O].initiate

*voipclientl[1l].initiate

* voipclientl[2].initiate =

out put -vector-file = tcpipl

[Run 2]

*.clients _netl = 18

*.voipclientl[O].initiate

*.voipclientl[1].initiate

*.voipclientl[2].initiate =

out put -vector-file = tcpip2.

[Run 3]

*.clients_netl =1

*.voipclientl[O].initiate

*.voipclientl[1l].initiate

*.voipclientl[2].initiate =

out put -vector-file = tcpi p3.

fal se
fal se
true

vec

fal se
fal se
true

vec

true
true
true

vec

243

hook

[Run 4]

*.clients netl = 3

*.voipclientl[O].initiate fal se

*voipclientl[1l].initiate fal se

*.voipclientl[2].initiate = fal se

out put -vector-file = tcpi p4d.vec

/] file: trades. ned

// author: Janes Knol

/|l Date: 31 May, 2004

/'l A sinple voip network to test the anount of data

/1 throughput with varying voip configurations. The UDP
/'l application provides network traffic that can be

/1l adjusted with the data rate. The nunber of voip nodes
/[l is currently limted to 12, but this can easily be

/| expanded. Runs are configured to vary the call cycle
[l for each configuration to exam ne how the configuration

/| conpares agai nst the standard 32k of data.

i nport

"Router",
244

"TCPC i ent Node",
" TCPSer ver Node" ,
"voi pUDPHost ",
"1 NE",

"wr edBox" ;

nodul e trades
par aneters:
voi p_clients: nuneric const, //nunber of voip pairs
sat _datarate : nuneric const, //satellite data rate
sat_error : nuneric const, //satellite BER

sat _delay : nuneric const; /lsatellite del ay

subnodul es:
voi pclientl: voi pUDPHost [voip_clients];
par anmet er s:
| ocal _port = 100,
dest _port = 200,
/1 Voice paraneters

voice_length = input(30s, "Length of voice
transm ssion: "),

initiate = i nput (fal se, "Initiate
conversation? "),

codec_rate = input(64000, "CODEC stream
rate: "),

245

reply delay = input(4s, "Time to delay

before replying to a voice burst: "),

frame_size = input(20ns, "Length of a

frame: "),
/'l network paraneters
nuncf Ports = 1,
parameters if index==0:
| ocal _addr = "10.0.0.2",
dest _addr = "10.0. 3. 2",
routingFile = "nodel_2.irt";
parameters if index==1:
| ocal _addr = "10.0.0.3",
dest _addr = "10.0. 3. 3",
routingFile = "nodel_3.irt";
paranmeters if index==2:
| ocal _addr = "10.0.0.4",
dest _addr = "10.0. 3. 4",
routingFile = "nodel 4.irt";
paraneters if index==3:
| ocal _addr = "10.0.0.5",
dest _addr = "10.0. 3.5",
routingFile = "nodel 5.irt";
paraneters if index==4:
| ocal _addr = "10.0.0.6",
dest _addr = "10.0.3.6",

246

routingFile = "nodel 6.i
paranmeters if index==5:

| ocal _addr = "10.0.0.7",

dest addr = "10.0.3.7",

routingFile = "nodel 7.1
paranmeters if index==6

| ocal _addr = "10.0.0.8",

dest _addr = "10.0. 3.8",

routingFile = "nodel 8.i
paranmeters if index==7

| ocal _addr = "10.0.0.9",

dest _addr = "10.0.3.9",

routingFile = "nodel 9.i
paranmeters if index==8:

| ocal _addr = "10.0.0.10"

dest addr = "10.0.3.10",

routingFile = "nodel_10.
paraneters if index==9:

| ocal _addr = "10.0.0. 11"

dest addr = "10.0.3.11",

routingFile = "nodel_ 11.
paraneters if index==10:

| ocal _addr = "10.0.0.12"

dest addr = "10.0. 3. 12",

routingFile = "nodel 12.
247

rt":

rt";

rt";

rt";

rt";

rt":

rt":

gat esi zes:
in[1],
out[1];
di splay: "p=40, 160, row; i =pc";
inel: INE [voip_clients];
di spl ay: "p=40, 200, row; i =i pc"
voi pclient2: voi pUDPHost [voip_clients];
par anmet ers:
| ocal _port = 200,
dest _port = 100,
/'l Voice paraneters

voice_length = input(30s, "Length of voice

transm ssion: "),

conversation? "),

",

initiate = i nput (fal se, "Initiate
codec_rate = input(64000, "CODEC stream
reply _delay = input(4s, "Time to delay

before replying to a voice burst: "),

frame_size = input(20ns, "Length of a
"y

/'l network paraneters

nuntf Ports = 1;
paranmeters if index==0:

| ocal _addr = "10.0. 3. 2",

dest _addr = "10.0.0.2",
248

routingFile = "node2_2.irt";

paranmeters if index==1:
| ocal _addr = "10.0. 3. 3",

dest _addr = "10.0.0. 3",

routingFile = "node2 _3.irt";

parameters if index==2:
| ocal _addr = "10.0.3.4",

dest _addr = "10.0.0.4",

routingFile = "node2 4.irt";

parameters if index==3:
| ocal _addr = "10.0.3.5",

dest _addr = "10.0.0.5",

routingFile = "node2 5.irt";

paranmeters if index==4:
| ocal _addr = "10.0.3.6",

dest _addr = "10.0.0.6",

routingFile = "node2 6.irt";

paraneters if index==5:
| ocal _addr = "10.0.3.7",
dest _addr = "10.0.0.7",
routingFile = "node2_7.irt"
paraneters if index==6
| ocal _addr = "10.0.3.8",

dest _addr = "10.0.0. 8",

routingFile = "node2 8.irt";

249

paranmeters if index==7
| ocal _addr = "10.0.3.9",
dest _addr = "10.0.0.9",
routingFile = "node2_9.irt";
parameters if index==8:
| ocal _addr = "10.0.3.10",
dest _addr = "10.0.0.10",
routingFile = "node2_10.irt";
parameters if index==9:
| ocal _addr = "10.0.3. 11",
dest _addr = "10.0.0.11",
routingFile = "node2_11.irt";
paraneters if index==10:
| ocal _addr = "10.0.3. 12",
dest _addr = "10.0.0.12",
routingFile = "node2_12.irt";
gat esi zes:
in[1],
out[1];
di spl ay: "p=40, 340, row, i =pc";
ine2: INE [voip_clients];

di splay: "p=40, 300, row; i =i pc";

trafficclientl: trafficUDPHost

paraneters:
250

| ocal _addr = "10.0.0.1",
dest _addr = "10.0.3.1",
| ocal _port = 400,
dest _port = 500,

nmsg_| ength = input (12000, "WMaxi num payl oad

length(bits): "), //1500 bytes

start _delay = fal se,

traffic_rate = input(64000, "Traffic stream

rate: "),

| engt h:

/'l network paraneters
nuncf Ports = 1,
routingFile = "nodel_1.irt";
gat esi zes:
in[1],
out[1];
di spl ay: "p=140, 100, row; i =pc";
trafficclient2: trafficUDPHost;
par anmet er s:
/1 UDP paraneters
| ocal _addr = "10.0.3.1",
dest _addr = "10.0.0.1",
| ocal _port = 400,
dest _port = 500,
nsg |l ength = input (1500, "Maxinmum payl oad

",

251

/1l traffic paraneters
start _delay = fal se,

traffic rate = input (64000,
rate: "),

/'l network paraneters

nuncf Ports = 1,

routingFile = "node2_1.irt";
gat esi zes:

in[1],

out[1];

di splay: "p=140, 420, row; i =pc";

routerl: Router;
par aneters:
/'l network paraneters
nunf Ports = 2+voi p_clients,
routingFile = "routerl.irt";
gat esi zes:
i n[2+voi p_clients],
out[2+voip_clients];
di splay: "p=140, 220;i =i pc";
router2: Router;
par anmeters:
/'l network paraneters

nunOf Ports = 2+voi p_clients,
252

"traffic stream

routingFile = "router2.irt";
gat esi zes:

i n[2+voi p_clients],

out [2+voi p_clients];

di splay: "p=140, 280;i =i pc";

wredl: w edBox;
par anet er s:
win = 2s,

bw max = input (48000, "Max anount of

allocate to high pri traffic: ");

di splay: "b=16, 15; p=100, 250; i =bwxcon_s";

w ed2: w edBox;

par anet er s:
W n = 2s,

bw max = input (48000, "Max anount of

allocate to high pri traffic: ");

di splay: "b=16, 15; p=180, 250; i =bwxcon_s";

connecti ons nocheck:

f or

i=1..voip_clients do //network 1

voi pclientl[i-1].0ut[0] --> inel[i-1].plainln;
inel[i-1].cypherQut --> routerl.in[i+1];
routerl.out[i+1] --> inel[i-1].cypherln;

253

bw

bw

to

to

inel[i-1].plainQut --> voipclientl[i-1].in[0];

endf or ;

for i=1..voip clients do //network 2
voi pclient2[i-1].0ut[0] --> ine2[i-1].plainln;
ine2[i-1].cypherQut --> router2.in[i+1];
router2.out[i+1] --> ine2[i-1].cypherln;
ine2[i-1].plainQut --> voipclient2[i-1].in[0];

endf or ;

trafficclientl.out --> routerl.in[1];

trafficclientl.in <-- routerl.out[1];

trafficclient2. out --> router2.in[1];

trafficclient2.in <-- router2.out[1];

routerl.out[0] --> wedl. gln;

wedl.qQut --> datarate sat_datarate error sat_error
del ay sat _delay --> wed2. passln;

wred2. passQut --> router2.in[0];

router2.out[0] --> wed2.qln;

wred2.qQut --> datarate sat_datarate error sat_error

del ay sat _delay --> wedl. passln
wr edl. passQut --> routerl.in[0];

254

endnodul e

network directnw : trades

endnet wor k

filenanme: ommet pp.ini
#ini file for trades. ned

aut hor: Janes Knol

H oot o e e e e e e e e e e e e e oo
[General]

prel oad-ned-files = *. ned .. I nynodes/ *. ned
@:/ honme/l PSui te/ nedfiles. | st ' ned files to | oad
dynam cal |y

network = directnw

t ot al - st ack- kb=7535

simtine-limt = 1h cmaxi mum simulation tinme to run

si mul ati on

cpu-tinme-limt= 30m ; maxi mum clock time to run simulation

random seed = 1 :seed for random nunbers

snapshot-file = trades.sna ;file to output snapshots to

;out put-vector-file = trades.vec ;file to output vectors

255

[Cndenv]

runs-t o-execut e=1-10

envi r onnent

express-node = yes

;run in express node

, runs

to

execute

usi ng

st at us- frequency=100000 ; frequency for status nessages

[Tkenv]

def aul t -run=1

[Qut Vect or s]

* interval =

#voi p

*

. voi pcl
. voi pcl
. voi pcl
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli

.voi pcli

ent1[1].
entl1[2].
ent1[3].
ent 2[0] .
ent 2[1] .
ent 2[2] .
ent 2[3] .
ent 1] 4] .
ent 1] 5] .
ent 1] 6] .

ent1[7].

1000s

*

;run to execute for

;del ay before starti

.recei
.recei
.recei
.recei
.recei
.recei
. recei
.recei
.recei
. recei

.recei

.del ay_tinme. enabled = no

.voipclient1l[0].*.receive_rate.

ve_rate.
ve_rate.
ve_rate.
ve rate.
ve_rate.
ve_rate.
ve_rate.
ve_rate.
ve_rate.
ve_rate.

ve_rate.
256

enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed
enabl ed

enabl ed

TK envi r onment

ng to record data

= no
= no
= no
= no
= no
= no
= no
= no
= no
= no
= no

= no

. voipclient2[4]..receive_rate.enabled = no
* . voipclient2[5].*.receive_rate.enabled = no
* . voipclient2[6].*.receive_rate.enabled = no

.voipclient2[7]..receive_rate.enabled = no

*

* trafficclientl. *. receive_rate.enabled = no
* trafficclient2.*. receive_rate. enabl ed = yes
*. inst _rec rate.enabled = no

* . send rate.enabled = no

*. inst_send rate.enabled = no

* Jitter.enabled = no ;jitter in voip apps
#tcp

; *.Send No. enabled = no

; *. TCP del ay. enabl ed = no

; *. Rec No. enabled = no

; *. Rec Seq No.enabled = no

; *.Owmnd size.enabled = no

; *. Goodput . enabl ed = no

; *. Avg_CGoodput . enabl ed = no

#wr ed

*. LP_BW enabl ed no
*. HP_BW enabl ed = no
* HPQ si ze. enabl ed = no

*. LPQ _si ze. enabl ed

no

[Par anet er s]
257

#connecti ons
* sat _datarate = 64000

*. sat _error =0

* sat _del ay

#traffic

*.meg_length = 11200

data rate of satellite connection

satellite BER

;length of a nessage in bits

500ns ;delay in satellite link

* traffic rate = 64000 ;rate of transm ssion

voi p app configuration

1

*.voip_clients

*.voice_length = 3m

; nunber of voip clients

;*.voipclientl1l[0].voice_length =

sil ence suppression enabl ed

;*.voipclientl[1].voice_length =

;*.voipclientl[2].voice_length =

;*.voipclientl[3].voice_l|length =

;*.voipclient2[0].voice_length =

;*.voipclient2[1].voice_length =

;*.voipclient2[2].voice_length =

;*.voipclient2[3].voice_length =

*.voipclientl[O].initiate

initiate the conversation
* voipclient2[0].initiate

* voipclientl[1l].initiate

true

fal se
true

258

;length of a voice burst

30s

3m
3m
3m
30s
3m
3m
3m

- does

;1 ength

this

when

client

O

.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
. voi pcl
. voi pcl
. voi pcl

.voi pcli

i ent

. voi pcl
. voi pcl
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli
.voi pcli

.voi pcli

ent2[1] .
ent 1] 2] .
ent 2[2] .
ent 1] 3] .
ent 2[3] .
ent 1] 4] .
ent 2[4] .
ent 1] 5] .
ent 2[5] .
ent 1] 6] .
ent 2[6] .
entl[7].
ent2[7].

ent1[0] .

ent 2[0] .
ent1[1].
ent 2[1] .
ent 1] 2] .
ent 2[2] .
ent 1] 3] .
ent 2[3] .
ent 1] 4] .
ent 2[4] .

ent 1] 5] .

niti

niti

niti

niti

niti

niti

niti

niti

niti

niti

initi
initi

initi

codec_rate

codec _rate
codec _rate
codec_rate
codec_rate
codec_rate
codec_rate
codec_rate
codec_rate
codec_rate

codec_rate

ate

ate

ate

ate

ate

ate

ate

ate

ate

ate

ate

ate

ate

fal se
true
fal se
true
fal se
true
fal se
true
fal se
true
fal se
true
fal se

= 16000 :data rate for

16000

16000

16000

5300

5300

5300

5300

5300

5300

5300
259

voi p

*. voi pclient2[5].codec_rate = 5300
*. voi pclientl[6].codec_rate = 5300
*. voi pclient2[6].codec_rate = 5300
* . voipclientl[7].codec_rate = 5300

*.voipclient2[7].codec_rate = 5300
*.reply_delay = 4s ;delay before sending a reply

* frane_size = 140ns ;size of a frane

*

.init_delay Os ;del ay before first burst

;*.tal k_cycle 50 ; percent off hook

*.call _length = 30m;length of a cal

#wr edbox

*. bw_max = 48000 ;48 for 64k and 75 for 128k

*. hpg_mn_thresh = 40 ;when to start random drop
*. hpg_max_thresh = 64 ; max drop

*. hpg_npd = 10 ; percent to drop
*.lpg_mn_thresh = 20 ;when to start random drop
*. Il pg_max_thresh = 34 ; max drop

* I pg_npd = 10 ; percent to drop

*max_q_len = 64 ; max queue depth

*n = .01 ;wei ghting factor

TCP
;*.clients_netl = 2 ;nunber of tcp clients in network 1

*.clients net2 = 0 ;nunber of tcp clients in network 2
260

* . mes=1400 ; maxi mum segnent si ze

* . tcp. debug=t rue ; debug on

*. message_| ength = 64000000 ;1 ength of nessage to transmt

processing delays for all nodes
* . preRouting. procdelay = 0
*.routing. procdelay = 0.2 us
*.local Deliver.procdelay = 1 us

* . send. procdelay = 0.5 us

* fragnentation.procdelay = 0.1 us

*. icnp.procdelay = 0

*.tunneling. procdelay = 0
*.multicast.procdelay = 0
. output[].procdelay = 0.2 us

* .1 nput Queue. procdelay = 0.1 us

* . networklnterface. procdelay = 0

hook nanes

* . qosBehavi or d ass = "EnqueueW t hout QoS" ;only
currently inplenmented in IPSuite

#configurati on changes between runs
[Run 1]
* talk _cycle = 100

out put -vector-file = tradesl. vec
261

hook

[Run 2]
* . talk _cycle = 90

out put -vector-file

[Run 3]
* . talk_cycle = 80

out put -vector-file

[Run 4]
*.talk_cycle = 70

out put -vector-file

[Run 5]
*.talk_cycle = 60

out put -vector-file

[Run 6]
* . talk_cycle = 50

out put-vector-file

[Run 7]
*. talk_cycle = 40

out put -vector-file

trades?2.

trades3.

trades4.

trades>s.

tradese6.

trades?.

vec

vec

vec

vec

vec

vec

262

[Run 8]

* talk _cycle = 30

out put -vector-file t rades8. vec
[Run 9]
* . talk_cycle = 20

trades9. vec

out put -vector-file

[Run 10]
* . talk_cycle = 10

trades10. vec

out put -vector-file

263

TH'S PAGE | NTENTI ONALLY LEFT BLANK

264

Bl BLI OGRAPHY

Bl ack, Uyless. Voice over |P. Upper Saddle River, New Jersey:
Prentice Hall PTR, 2000.

Barsal eau, Dean A. & Tunmala, Mirali. QS Testing of the ADNS
Increment |1 Architecture. Presentation at My, 2004 Navy
Quality of Service (QS) Wrking G oup.

Buddenburg, Rex. Radio-WAN Building. My 2003. Available from
http://webl. nps. navy. m | / ~budden/ | ect ur e. not es/ r-wan/ r adi o-
WAN bui I ding. html (Last accessed June 2004)

Caput o, Robert. G sco Packetized Voice & Data Integration. New
York: McGawHill, 2000.

Casey, Rodger . Black Routing Configuration For [Pv4 And
Transition Approach Rev 2. February, 2004. Retrieved from
https://vpo. spawar. navy. m |/ pd-17/ pmw 179- 2/ adns/
docunents.nsf/titlelibrarydoc/ bl ack-core+transition/ $fil e/

Bl ack+ (Last accessed June 2004)

Davi dson, Jonathan & Peters, Janes. Voice over |P Fundamentals.
| ndi anapolis, Indiana: C sco Press, 2000.

Deering, S. & Hinden, R RFC 2460: |Pv6 Specification. Decenber
1998 Available from http://ww.ietf.org/rfc/rfc2460.txt
(Last accessed June 2004)

Def ense Information Systens Agency/Joint Interoperability Test
Center (DISA/JITC) APPENDIX 3 GENERIC SWTCH NG CENTER
REQUI REMENTS (GSCR) 08 SEP 03 DSN VO CE OVER | NTERNET
PROTOCOL (VA P) REQUI REMENTS. Retrieved from
http://jitc.fhu.disa.ml/tssi/cert pdfs/gscr_apdx3 dec03. pd
f (Last accessed June 2004)

265

Farley, Tom Tom Farley's Tel ephone H story Series. 1998-2004
Avail able from _http://ww. privateline.conl Tel ephoneHi story/

Hi storyl. ht m (Last accessed June 2004)

Gormaa, Hassan. Designing Concurrent, Distributed, and Real -Tine
Applications with UML. New York: Addi son-Wsl ey, 2000.

Hucke, Ed, Nguyen, Quang, Teng, Wden, Goodrich, Callis, Bart,
Ron, Wadler, Andrew, Arendale, Ron, Et. al. Analysis of
Qui ntum Tenor Vocoding for Support for Secure Voice.
Novemnber 2003. Retrieved from
https://vpo. spawar. navy. m |/ pd- 17/ pmw 179- 2/ adns/
docunents.nsf/titlelibrarydoc/voi p+trunki ng+w secure+voi ce/
$file/ Quinti (Last accessed June 2004)

MIller, Mark A Voice over |P Technologies: Building the
Converged Network. New York, NY: M&T Books, 2002.

Schil ke, Andreas. (1997, June). TCP over Satellite Links.
Sem nar " Broadband Net wor ki ng Technol ogy' "'
http://ww. tkn. tu-berlin.de/curriculal/lss97/bnt97/
schil ke.htm (Last accessed June 2004)

266

| NI TI AL DI STRI BUTI ON LI ST

Def ense Technical Informati on Center
Ft. Belvoir, Virginia

Dudl ey Knox Library
Naval Postgraduate School
Monterey, California

Deborah Gol dsmith
Navy QoS WG
San Diego, California

Jessi e Rubal cava

Aut omat ed Digital Networking System (ADNS)
San Diego, California

267

